针对由超级电容器与蓄电池储能构成的混合储能系统,提出一种基于改进型二阶滤波功率分配的荷电状态(state of charge,SOC)恢复控制策略。首先,分析传统一阶低通滤波算法的功率分配过程,构造具有功率误差反馈环的二阶滤波传递函数,消除传统一阶低通滤波器在响应高频功率指令时的积分作用,改善混合储能系统对目标功率指令的跟踪控制效果。然后,以归一化后的混合储能系统SOC为控制指标,制定滤波时间常数新型调整规则,动态优化混合储能系统功率分配指令。仿真结果表明,该控制策略可有效平抑风电并网功率波动,最大化利用超级电容储能可用容量,同时延长蓄电池使用寿命。
Abstract
A state of charge (SOC) recovery control strategy based on improved second-order filter power allocation is proposed for hybrid energy storage system composed of supercapacitor and battery energy storage. Firstly, the power allocation process of the traditional first-order low-pass filter algorithm is analyzed, and the second-order filter transfer function with power error feedback loop is constructed to eliminate the integral effect of the traditional first-order low-pass filter in response to the high frequency power instruction and improve the tracking control effect of the hybrid energy storage system on the target power instruction. Then, taking the normalized SOC of hybrid energy storage system as the control index, a new adjustment rule of filtering time constant is formulated to dynamically optimize the power allocation command of hybrid energy storage system. The simulation results show that the control strategy can effectively suppress the fluctuation of wind power grid-connected power, maximize the available capacity of supercapacitor energy storage, and prolong the service life of battery.
关键词
混合储能系统 /
二阶滤波 /
荷电状态 /
功率平抑 /
能量管理
Key words
hybrid energy storage system /
second-order filtering /
state of charge /
power stabilization /
energy management
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱永强, 王甜婧, 许阔, 等. 基于动态规划-遗传算法的混合储能系统实时协调调度和经济运行[J]. 太阳能学报, 2019, 40(4): 1059-1066.
ZHU Y Q, WANG T J, XU K, et al.Real-time coordinated dispatch and economic operation of hybrid energy storage system based on dynamic programming-genetic algorithm[J]. Acta energiae solaris sinica, 2019, 40(4): 1059-1066.
[2] 李学斌, 刘建伟. 采用二阶滤波的混合储能系统实时功率分配方法[J]. 电网技术, 2019, 43(5): 1650-1657.
LI X B, LIU J W.Real-time power distribution method for hybrid energy storage system using second-order filtering[J]. Power system technology, 2019, 43(5): 1650-1657.
[3] 马速良, 马会萌, 蒋小平, 等. 基于Bloch球面的量子遗传算法的混合储能系统容量配置[J]. 中国电机工程学报, 2015, 35(3): 592-599.
MA S L, MA H M, JIANG X P, et al.Capacity configuration of hybrid energy storage system based on Bloch sphere quantum genetic algorithm[J]. Proceedings of the CSEE, 2015, 35(3): 592-599.
[4] 陈谦, 陈霄逸, 金宇清, 等. 基于混合储能的大型风电场优化控制[J]. 电力自动化设备, 2015, 35(4): 70-76.
CHEN Q, CHEN X Y, JIN Y Q, et al.Optimal control of large wind farms based on hybrid energy storage[J]. Electric power automation equipment, 2015, 35(4): 70-76.
[5] 于芃, 周玮, 孙辉, 等. 用于风电功率平抑的混合储能系统及其控制系统设计[J]. 中国电机工程学报, 2011, 31(17): 127-133.
YU P, ZHOU W, SUN H, et al.Design of hybrid energy storage system and its control system for wind power stabilization[J]. Proceedings of the CSEE, 2011, 31(17): 127-133.
[6] 何俊强, 师长立, 马明, 等. 基于元模型优化算法的混合储能系统双层优化配置方法[J]. 电力自动化设备, 2020, 40(7): 157-167.
HE J Q, SHI C L, MA M, et al.A two-tier optimal configuration method for hybrid energy storage system based on meta-model optimization algorithm[J]. Electric power automation equipment, 2020, 40(7): 157-167.
[7] 李培强, 李文英, 唐捷, 等. 基于SOC优化的混合储能平抑风电波动方法[J]. 电力系统及其自动化学报, 2017, 29(3): 20-27.
LI P Q, LI W Y, TANG J, et al.Hybrid energy storage based on SOC optimization to suppress wind power fluctuations[J]. Proceedings of the CSU-EPSA, 2017, 29(3): 20-27.
[8] SUN Y.Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation[J]. Journal of modern power systems and clean energy, 2019, 3(7): 512-524.
[9] 陈厚合, 杜欢欢, 张儒峰, 等. 考虑风电不确定性的混合储能容量优化配置及运行策略研究[J]. 电力自动化设备, 2018, 38(8): 174-182, 188.
CHEN H H, DU H H, ZHANG R F, et al.Research on the optimal configuration and operation strategy of hybrid energy storage capacity considering the uncertainty of wind power[J]. Electric power automation equipment, 2018, 38(8): 174-182, 188.
[10] 吴杰, 丁明. 采用自适应小波包分解的混合储能平抑风电波动控制策略[J]. 电力系统自动化, 2017, 41(3): 7-12.
WU J, DING M.Hybrid energy storage and wind power fluctuation control strategy using adaptive wavelet packet decomposition[J]. Automation of electric power systems, 2017, 41(3): 7-12.
[11] 吴振威, 蒋小平, 马会萌, 等. 用于混合储能平抑光伏波动的小波包-模糊控制[J]. 中国电机工程学报, 2014, 34(3): 317-324.
WU Z W, JIANG X P, MA H M, et al.Wavelet packet-fuzzy control for hybrid energy storage to suppress photovoltaic fluctuations[J]. Proceedings of the CSEE, 2014, 34(3): 317-324.
[12] 程志江, 李永东, 谢永流, 等. 带超级电容的光伏发电微网系统混合储能控制策略[J]. 电网技术, 2015, 39(10): 2739-2745.
CHENG Z J, LI Y D, XIE Y L, et al.Hybrid energy storage control strategy for photovoltaic power generation microgrid system with super capacitors[J]. Power system technology, 2015, 39(10): 2739-2745.
[13] 张坤, 黎春湦, 毛承雄, 等. 基于超级电容器-蓄电池复合储能的直驱风力发电系统的功率控制策略(英文)[J]. 中国电机工程学报, 2012, 32(25): 99-108, 15.
ZHANG K, LI C S, MAO C X, et al.Power control strategy of direct drive wind power generation system based on supercapacitor-battery composite energy storage (English)[J]. Proceedings of the CSEE, 2012, 32(25): 99-108, 15.
[14] 李斌, 宝海龙, 郭力. 光储微电网孤岛系统的储能控制策略[J]. 电力自动化设备, 2014, 34(3): 8-15.
LI B, BAO H L, GUO L.Energy storage control strategy of optical storage microgrid island system[J]. Electric power automation equipment, 2014, 34(3): 8-15.
[15] 杨水丽, 李建林, 惠东, 等. 用于跟踪风电场计划出力的电池储能系统容量优化配置[J]. 电网技术, 2014, 38(6): 1485-1491.
YANG S L, LI J L, HUI D, et al.Optimization configuration of battery energy storage system capacity for tracking planned output of wind farms[J]. Power system technology, 2014, 38(6): 1485-1491.
基金
国家自然科学基金(51667018); 新疆维吾尔自治区自然科学基金(2021D01C044)