以太阳能烟囱发电(SCPP)系统为研究对象,比较定热流密度、离散纵坐标(DO)辐射模型、表面对表面(S2S)辐射模型对SCPP温度、速度等性能模拟结果,将3种模型模拟结果与试验数据对比,选择更合适的辐射模型应用于SCPP数值模拟。结果表明,S2S辐射模型集热棚出口流体最大速度比定热流密度和DO辐射模型分别高0.13、0.36 m/s;S2S辐射模型沿烟囱入口流体最大湍流黏度比定热流密度和DO辐射模型分别高16.87%、8.44%;定热流密度、DO辐射模型、S2S辐射模型沿集热棚半径流体温度与试验结果的误差分别为3.09%、0.98%、10.14%。DO辐射模型更适合SCPP系统的数值模拟计算。
Abstract
The solar chimney power plant(SCPP)system is taken as the research object. The simulation results of SCPP temperature and velocity by constant heat flux, discrete ordinate (DO) radiation model and surface to surface (S2S) radiation model were compared. The simulation results of the three models were compared with the experimental data, and a more suitable radiation model was selected for SCPP numerical simulation.The results show that the maximum fluid velocity of S2S radiation model is 0.13 m/s and 0.36 m/s higher than that of constant heat flux and DO radiation model, respectively. The maximum turbulent viscosity of the S2S radiation model along the inlet of the chimney is 16.87% and 8.44% higher than that of the constant heat flux and DO radiation model, respectively. The errors of the fluid temperature along the radius of the heat collecting shed are 3.09%, 0.98% and 10.14%, respectively, for the constant heat flux, DO radiation model and S2S radiation model. DO radiation model is more suitable for SCPP numerical model.
关键词
太阳能烟囱 /
辐射模型 /
数值模拟 /
集热系统
Key words
solar chimney /
radiation model /
numerical simulation /
collector system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PASUMARTHI N, SHERIF S.Experimental and theoretical performance of a demonstration solar chimney model-Part II: experimental and theoretical results and economic analysis[J]. International journal of energy research, 1998, 22(5): 443-461.
[2] GHALAMCHI M, KASAEIAN A, GHALAMCHI M.Experimental study of geometrical and climate effects on the performance of a small solar chimney[J]. Renewable and sustainable energy reviews, 2015, 43: 425-431.
[3] NASRAOUI H, DRISS Z, KCHAOU H.Novel collector design for enhancing the performance of solar chimney power plant[J]. Renewable energy, 2020, 145: 1658-1671.
[4] KIWAN S, AL-NIMR M D, ABDEL SALAM Q I. Solar chimney power-water distillation plant (SCPWDP)[J]. Desalination, 2018, 445: 105-114.
[5] PASTOHR H, KORNADT O, GÜRLEBECK K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant[J]. International journal of energy research, 2004, 28(6): 495-510.
[6] 严寒, 张鸿雁. 不同辐射模型在太阳辐射数值模拟中的比较[J]. 节能技术, 2015, 33(5): 428-431, 452.
YAN H, ZHANG H Y.Comparison of different radiation models in solar radiation numerical simulation[J]. Energy saving technology, 2015, 33(5): 428-431, 452.
[7] ALIGHOLAMI M, KHOSROSHAHI S S, KHO-SROSHAHI A R. Hydrodynamic and thermodynamic enhancement of a solar chimney power plant[J]. Solar energy, 2019, 191: 180-192.
[8] HUANG M H, CHEN L, LEI L, et al.Experimental and numerical studies for applying hybrid solar chimney and photovoltaic system to the solar-assisted air cleaning system[J]. Applied energy, 2020, 269: 1-14.
[9] 聂晶, 田瑞, 蔡琦龙, 等. 基于太阳能烟囱发电系统集热性能试验的集热棚倾角优选[J]. 农业工程学报, 2018, 34(12): 224-229.
NIE J, TIAN R, CAI Q L, et al.Optimal collector angle by test on heat collection performance of solar chimney power plant system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 224-229.
[10] 乾超群. 太阳能烟囱热气流系统的数值模拟与分[D]. 武汉: 华中科技大学, 2014.
QIAN C Q.The numerical simulation and analysis of the solar chimney heat flow system[D]. Wuhan: Huazhong University of Science and Technology, 2014.
[11] SUKHATME S P, NAYAK J K.Solar energy: principles of thermal collection and storage[M]. 3rd ed. New Delhi: McGraw Hill Education, 2008: 1-122.
基金
风能太阳能利用技术教育部重点实验室开放基金(2019-2021); 内蒙古自然科学基金(2021LHMS05007); 内蒙古工业大学博士基金(BS201933); 内蒙古自治区重大专项(2019ZD0014)