制备5种不同润湿性表面,并在冷凝条件下进行光伏组件表面灰尘自清洁实验,分析不同表面冷凝除尘的过程、机理以及除尘效果。结果表明:在实验条件下,超亲水表面、亲水表面和疏水表面均无法实现冷凝除尘,而超疏水表面和超滑表面上冷凝液滴以滚动方式除去表面76%以上的灰尘。相较于亲水型表面,疏水型表面冷凝干燥后能有效减少表面灰尘相对覆盖率,进而减少灰尘遮挡对光伏发电的影响。超疏水表面滚动液滴较小且速度快,除尘更早发生;而超滑表面滚动液滴较大且速度慢,但与表面接触面积大,清扫范围广。冷凝除尘主要依靠灰尘颗粒与冷凝水之间的界面力,液滴发生运动的临界直径越小越有利于除尘。
Abstract
Five surfaces with different wettabilities are prepared. Then, the self-cleaning of PV module surface is investigated under condensing conditions. The condensation-induced dust removal process, mechanism and dust removal performance of different surfaces were analyzed. The results show that the super-hydrophilic surface, hydrophilic surface and hydrophobic surface cannot achieve dust removal, while the condensate droplets on the superhydrophobic surface (SHS) and hydrophobic slippery surface (HPO-SLIP) can removemore than 76% dust of the surface in a rolling manner. Compared with the hydrophilic surface, the hydrophobic surface can effectively reduce the relative coverage of dust on the surface after condensation and drying, thus reducing the impact of the shielding effect of dust on photovoltaic system. On the SHS, rolling droplets are smaller and faster, and dust removal occurs earlier. In contrast, rolling droplets on the HPO-SLIP are larger and slower, but the contact area with the surface is large, resulting in a wider cleaning range. The condensation-induced dust removal mainly relies on the interface force between dust particles and condensate. The smaller the critical diameter of droplet detachment, the more conducive dust can be removed.
关键词
光伏组件 /
光伏板 /
表面自清洁 /
冷凝 /
表面润湿性 /
灰尘
Key words
photovoltaic modules /
surface self-cleaning /
condensation /
surface wettability /
dust
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ILSE K K, RABANAL J, SCHONLEBER L, et al.Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes[J]. IEEE journal of photovoltaics, 2018, 8(1): 1-7.
[2] KAZEM H A, CHAICHAN M T, AI-WAELI A H A, et al. A review of dust accumulation and cleaning methods for solar photovoltaic systems[J]. Journal of cleaner production, 2020, 276: 1-22.
[3] ILSE K K, MICHELI L, FIGGIS B W, et al.Techno-economic assessment of soiling losses and mitigation strategies for solar power generation[J]. Joule, 2019, 3(10): 2303-2321.
[4] PAN A J, LU H, ZHANG L Z.Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings[J]. Energy, 2019, 181: 645-653.
[5] QUAN Y Y, ZHANG L Z.Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass[J]. Solar energy materials & solar cells, 2017, 160: 382-389.
[6] ILSE K K, FIGGIS B W, WERNER M, et al.Comprehensive analysis of soiling and cementation processes on PV modules in Qatar[J]. Solar energy materials & solar cells, 2018, 186: 309-323.
[7] ILSE K K, FIGGIS B W, V. NAUMANN, et al. Fundamentals of soiling processes on photovoltaic modules[J]. Renewable & sustainable energy reviews, 2018, 98: 239-254.
[8] ILSE K K, FIGGIS B W, KHAN M Z, et al.Dew as a detrimental influencing factor for soiling of PV modules[J]. IEEE Journal of photovoltaics, 2018, 9(1): 287-294.
[9] ILSE K K, WERNER M, NAUMANN V, et al.Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates[J], Physica status solidi-rapid research letters, 2016, 10: 525-529.
[10] NAYSHEVSKY I, XU Q F, BARAHMAN G, et al.Fluoropolymer coatings for solar cover glass: anti-soiling mechanisms in the presence of dew[J]. Solar energy materials & solar cells, 2019, 206: 110281.
[11] YANG Y F, ZHUANG D W, DING G L.Effect of surface wettability of fins on dust removal by condensate water[J]. International journal of heat and mass transfer, 2019, 130: 1260-1271.
[12] 牟春丽, 杨敏林, 刘雪峰, 等. 温湿度对超疏水表面结露特性的影响[J]. 工程热物理学报, 2020, 41: 2491-2500.
MOU C L, YANG M L, LIU X F, et al.Effet of temperature and humidity on the condensation of air on the superhydrophobic surface[J]. Journal of engineering thermophysics, 2020, 41: 2491-2500.
[13] MIWA M, NAKAJIMA A, FUJISHIMA A, et al.Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000, 16: 5754-5760.
[14] BUTT H J, KAPPL M.Normal capillary forces[J]. Advances in colloid and interface science, 2009, 146: 48-60.
[15] LAZOUSKAYA V, WANG L P, OR D, et al.Colloid mobilization by fluid displacement fronts in channels[J]. Journal of colloid & interface science, 2013, 406: 44-50.
[16] YU M, CHEN S, ZHANG B, et al.Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis[J]. Langmuir, 2014, 30: 13615-13621.
[17] LAMBERT P, STEPHANE R.Surface and contact forces models within the framework of microassembly[J]. Journal of micromechatronics, 2006, 3(2): 123-157.
[18] ISAIFAN R J, JOHNSON D, ACKERMANN L, et al.Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces[J]. Solar energy materials & solar cells, 2019, 191: 413-421.
[19] WU Y P, ZHANG C Y.Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface[J]. Applied thermal engineering, 2013, 58: 664-669.
[20] FURMIDGE C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of colloid Science, 1962, 17(4): 309-324.
[21] MITARAI N, NORI F.Wet granular materials[J]. Advances in physics, 2006, 55: 1-45.
基金
广东省基础与应用基础研究基金(2019A1515110498); 广东省分布式能源系统重点实验室(2020B1212060075); 广东省高等学校珠江学者岗位计划(2019)