风电机组高柔塔二阶涡激振动特性研究

陶涛, 龙凯, 白欣鉴, 刘永前

太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 498-503.

PDF(1557 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1557 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (2) : 498-503. DOI: 10.19912/j.0254-0096.tynxb.2021-0993

风电机组高柔塔二阶涡激振动特性研究

  • 陶涛1,2, 龙凯1,2, 白欣鉴1,2, 刘永前1,2
作者信息 +

STUDY ON SECOND-ORDER VORTEX-INDUCED VIBRATION CHARACTERISTICS OF HIGH-FLEXIBLE TOWERS OF WIND TURBINES

  • Tao Tao1,2, Long Kai1,2, Bai Xinjian1,2, Liu Yongqian1,2
Author information +
文章历史 +

摘要

针对现有风电机组涡激振动研究侧重于无顶部质量刚塔的一阶涡激振动,忽视有顶部质量高柔塔的二阶涡激振动的不足,开展高柔塔二阶涡激振动特性研究。首先,基于GH Bladed软件建立高柔塔风电机组模型,并通过模态分析得到高柔塔二阶固有频率及模态振型;然后,基于涡激振动相关标准,计算二阶涡激振动作用时各高度处的惯性力;最后,以某型2 MW高柔塔风电机组为研究对象,进行二阶涡激振动特性分析,并与一阶涡激振动特性进行对比。结果表明,高柔塔一阶涡激振动造成的影响较小,可忽略不计;二阶涡激振动易导致塔筒强度不足,存在较大的倒塔风险。

Abstract

The existing wind turbine vortex-vibration researohes usually focus on the first-order vortex-induced vibration of the rigid tower regardless of the top mass instead of ignoring. The second-order vortex-induced vibration of the high-flexible tower with top mass is neglected. This study mainly concentrates on the second-order vortex-induced vibration characteristics of wind turbine high flexible towers. Firstly, the wind turbine model containing a high-flexible tower is established using GH Bladed software. The natural frequencies and vibration modes of the high-flexible tower are obtained through modal analysis. Then, the inertial force at each height under the altion of the second-order vortex-induced vibration is calculated according to the relevant standards. Finally, taking 2 MW high-flexible tower wind turbine as the reasearch object, the second-order vortex-induced vibration characteristics are analyzed and compared with the counterpart in the fundamental vortex-induced pattern. The results reveal that the influence of the first-order vortex-induced vibration the tower strength can be ignored. However, the second-order vortex-induced vibration may easily lead to insufficient tower strength, which is a potential risk of tower collapse.

关键词

风电机组 / 塔筒 / 疲劳损伤 / 涡激振动 / 极限强度

Key words

wind turbines / towers / fatigue damage / vortex-induced vibration / ultimate strength

引用本文

导出引用
陶涛, 龙凯, 白欣鉴, 刘永前. 风电机组高柔塔二阶涡激振动特性研究[J]. 太阳能学报. 2022, 43(2): 498-503 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0993
Tao Tao, Long Kai, Bai Xinjian, Liu Yongqian. STUDY ON SECOND-ORDER VORTEX-INDUCED VIBRATION CHARACTERISTICS OF HIGH-FLEXIBLE TOWERS OF WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 498-503 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0993
中图分类号: TK513.5   

参考文献

[1] LIU Y Q, QIAO Y H, HAN S, et al.Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow[J]. Renewable energy, 2021, 172: 882-896.
[2] 乔延辉. 计及风速时空变化规律的风电功率预测方法研究[D]. 北京: 华北电力大学, 2019.
QIAO Y H.Research on wind power prediction based on wind speed temporal and spatial variation[D]. Beijing: North China Electric Power University, 2019.
[3] 付德义, 张晓东, 王瑞明, 等. 特定场址条件下风电机组载荷适应性评估[J]. 太阳能学报, 2021, 42(6): 425-431.
FU D Y, ZHANG X D, WANG R M, et al.Wind turbine load adaptability assessment under specific site conditions[J]. Acta energiae solaris sinica, 2021, 42(6): 425-431.
[4] 杜静, 杨瑞伟, 李东坡, 等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报, 2021, 42(3): 9-14.
DU J, YANG R W, LI D P, et al.Stability analysis of reinforced concrete tower of MW grade wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 9-14.
[5] 陈逸杰, 张艳江, 林成欢, 等. 风电预应力混凝土-钢混合塔架设计优化研究[J]. 太阳能学报, 2021, 42(3): 121-127.
CHEN Y J, ZHANG Y J, LIN C H, et al.Optimization and analysis on prestressed concrete-steel hybrid wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(3): 121-127.
[6] 管彩文, 田常录. 风力机塔架模态分析方法与比较[J]. 太阳能学报, 2021, 42(4): 473-478.
GUAN C W, TIAN C L.Modal analysis method and comparison for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(4): 473-478.
[7] LOPATINSKI V.Vortex induced vibrations in high-rise buildings[D]. Aalto: Aalto University, 2020.
[8] KRAUTHAMMER T.A numerical study of wind-induced tower vibrations[J]. Computers & structures, 1987, 26(1): 233-241.
[9] MESKELL C, PELLEGRINO A.Vortex shedding lock-in due to pitching oscillation of a wind turbine blade section at high angles of attack[J]. International journal of aerospace engineering, 2019, 2019: 6919505.
[10] 李德源, 刘胜祥, 黄小华. 大型风力机筒式塔架涡致振动的数值分析[J]. 太阳能学报, 2008, 29(11): 1432-1437.
LI D Y, LIU S X, HUANG X H.Numerical analysis of vortex-induced vibration of the large scale wind turbine cylindrical tower[J]. Acta energiae solaris sinica, 2008, 29(11): 1432-1437.
[11] 龙凯, 贾娇. 大型水平轴风力机塔筒涡激振动焊缝疲劳分析[J]. 太阳能学报, 2015, 36(10): 2455-2459.
LONG K, JIA J.Analysis of fatigue damage of tower of large scale horizontal axis wind turbine by wind-induced transverse vibration[J]. Acta energiae solaris sinica, 2015, 36(10): 2455-2459.
[12] VIRÉ A, DERKSEN A, FOLKERSMA M, et al.Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers[J]. Wind energy science, 2020, 5: 793-806.
[13] LIVANOS D.Investigation of vortex induced vibrations on wind turbine towers[D]. Delft: Delft University of Technology, 2018.
[14] 陈朝富. MW级风力机塔筒强度分析[D]. 上海: 上海交通大学, 2017.
CHEN C F.Strength analysis of MW wind turbine tower[D]. Shanghai: Shanghai Jiao Tong University, 2017.
[15] 龙凯, 毛晓娥. 大型水平轴风力机塔筒焊缝强度分析[J]. 太阳能学报, 2014, 35(10): 1981-1987.
LONG K, MAO X E.Analysis of weld strength in turbine tower of HAWT[J]. Acta energiae solaris sinica, 2014, 35(10): 1981-1987.
[16] 赵荣博, 孙鹏文, 郜佳佳, 等. 风力机塔筒门洞焊缝多轴疲劳寿命预测[J]. 太阳能学报, 2017, 38(5): 1415-1420.
ZHAO R B, SUN P W, GAO J J, et al.Multi-axial fatigue life prediction of wind turbine tower door's welding[J]. Acta energiae solaris sinica, 2017, 38(5): 1415-1420.
[17] LIU Y Q, TAO T, ZHAO X Y, et al.Support vector regression-based fatigue damage assessment method for wind turbine nacelle chassis[J]. Structures, 2021, 33: 759-768.

基金

国家重点研发计划(2019YFE0104800)

PDF(1557 KB)

Accesses

Citation

Detail

段落导航
相关文章

/