当来流速度过大或在大攻角来流工况下,潮流能水轮机叶片边界层会发生流动分离,导致获能效率降低,甚至会使叶片发生失速破坏。针对上述问题,该文将涡流发生器(VGs)理论与水轮机叶片设计相结合,开展VGs对潮流能水轮机叶片流动分离现象的抑制机理研究。以NACA63418翼型设计的潮流能水轮机叶片为研究对象,分别建立带和不带VGs的叶片三维模型,应用CFD方法研究VGs对潮流能水轮机叶片的流动分离特性影响。结果表明:水轮机叶片流动分离主要发生在吸力侧表面叶根部分,随着流速的增大会沿叶根向叶尖径向扩展;VGs能有效减小水轮机叶片吸力侧表面分离区域,抑制流动分离现象发生;在该研究中,安装VGs后水轮机叶片整体获能性能提升明显,获能系数增加0.5%~5.0%,且能增加潮流能水轮机运行稳定性。
Abstract
Tidal turbine blades are prone to flow separation in boundary layer under the condition of high speed or high angle of attack, which will lead to the reduction of the energy efficiency and even the stall damage of the blades. In order to solve the above problems, this paper combines the theory of Vertex Generators(VGs) with the design of turbine blades and studies the suppression mechanism of the flow separation effect on turbine blades by means of VGs. With NACA63418 airfoil design as the research object, three-dimensional models of blades with and without VGs are established, and the influence of VGs on flow separation characteristics of tidal turbine blades is studied by CFD method. The research results show that flow separation of turbine blades mainly occurs at the root part of suction surface, and the flow separation region expands radially as the flow velocity increases. VGs can effectively reduce flow separation area on the suction surface of turbine blades by suppressing the flow separation effect. In this study, compared with the turbine blades without VGs, the power efficiency coefficient of turbine blades with VGs is increased by 0.5%-5.0% and the the operation stability can be improved as well.
关键词
潮流能 /
流动分离 /
数值模拟 /
涡流发生器 /
叶片设计
Key words
tidal energy /
flow separation /
numerical simulation /
vortex generators /
blade design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈三木. 潮流能水轮机水翼型优化[D]. 哈尔滨: 哈尔滨工业大学, 2019.
CHEN S M.Horizontal axis tidal turbine hydrofoil optimization[D]. Harbin: Harbin Institute of Technology, 2019.
[2] TAN K Z, MUHAMMED Z, KAMARUL A A.Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV Performance[J]. Chinese journal of aeronautics, 2019, 24(5): 577-583.
[3] VOLINO R J.Combined effects of wakes and pulsed vortex generator jet flow control on boundary layer separation on a very high lift low pressure turbine airfoil[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, Vancouver, British Columbia, Canada, 2011: 1847-1858.
[4] YAN Y, AVITAL E, WILLIAMS J, et al.CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine[J]. Journal of renewable and sustainable energy, 2019, 11(4): 043302.
[5] SAENZ-AGUIRRE A, FERNANDEZ-GAMIZ U, ZULUETA E, et al.Flow control based 5 MW wind turbine enhanced energy production for hydrogen generation cost reduction[J]. International journal of hydrogen energy, 2022, 47(11): 7049-7061.
[6] WITOLD S, MAC G, CHRISTIAN B, et al.Increase in the annual energy production due to a retrofit of vortex generators on blades[J]. Wind energy, 2020, 23(3): 617-626.
[7] 袁鹏, 陈超, 王树杰, 等. 潮流能水平轴水轮机翼型几何参数对其转捩特性的影响研究[J]. 太阳能学报, 2020, 41(6): 156-163.
YUAN P, CHEN C, WANG S J, et al.Study on influence of geometric parameters on transition characteristics of tidal turbine hydrofoil[J]. Acta energiae solaris sinica, 2020, 41(6): 156-163.
[8] 孙浩伟, 谭俊哲, 刘永辉, 等. 涡流发生器对潮流能水轮机翼型水动力学特性影响的数值模拟[J]. 中国海洋大学学报(自然科学版), 2022, 52(2): 115-122.
SUN H W, TAN J Z, LIU Y H, et al.Numerical simulation of the influence of vortex generator on hydrodynamic characteristics of tidal turbine hydrofoil[J]. Periodical Ocean University of China, 2022, 52(2): 115-122.
[9] REN Y R, LIU B W, ZHANG T T, et al.Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets[J]. Ocean engineering, 2017, 144(1): 374-383.
[10] 李明高, 李明. STAR-CCM+与流场计算[M]. 北京: 机械工业出版社, 2011.
LI M G, LI M.STAR-CCM+and flow field calculation[M]. Beijing: China Machine Press, 2011.
[11] 周学志. 潮流能水平轴水轮机叶片性能分析与研究[D]. 青岛: 中国海洋大学, 2013.
ZHOU X Z.Analysis and study of horizontal axis tidal turbine blade performance[D]. Qingdao: Ocean University of China, 2013.
[12] 吴洲, 蒋笑, 王海鹏, 等. 涡流发生器对风力机叶片气动特性的影响[J]. 能源与节能, 2020, 25(2): 45-47.
WU Z, JIANG X, WANG H P, et al.Effect of vortex generator on aerodynamic characteristics of wind turbine blade[J]. Energy and energy conservation, 2020, 25(2): 45-47.
[13] ZHU C Y, WANG T, WU J.Numerical investigation of passive vortex generators on a wind turbine airfoil undergoing pitch oscillations[J]. Energies, 2019, 12(4): 654-673.
[14] LIN J C.Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progressin aerospace sciences, 2002, 38(4-5): 389-420.
[15] OMAR M F, MARC M, OMAR I, et al.Design optimization of the aerodynamic passive flow control on NACA4415 airfoil using vortex generators[J]. European journal of mechanics-B/fluids, 2016, 56: 82-96.
[16] CHEN H.Numerical investigation of the effects of vortex generators on the bell A821201 airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(11): 2-11.
[17] TAVERNIER D D, FERREIRA C, VIRÉ A, et al.Controlling dynamic stall using vortex generators on a wind turbine airfoil[J]. Renewable energy, 2021, 172(3): 1194-1211.
[18] MUELLER-VAHL H, PECHLIVANOGLOU G, NAYERI C N, et al.Vortex generators for wind turbine blades: a combined wind tunnel and wind turbine parametric study[C]//ASME Turbo Expo: Turbine Technical Conference & Exposition, Copenhagen, Denmark, 2012: 899-914.
基金
山东省自然科学基金(ZR2021ME095); 国家重点研发计划(2018YFB1501903); 山东省重点研发计划(2019GGX103012)