基于多层语义融合注意力机制的短期风电功率概率密度预测方法

綦方中, 卓可翔, 曹柬

太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 140-147.

PDF(2202 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2202 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (11) : 140-147. DOI: 10.19912/j.0254-0096.tynxb.2022-0138

基于多层语义融合注意力机制的短期风电功率概率密度预测方法

  • 綦方中, 卓可翔, 曹柬
作者信息 +

SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION METHOD BASED ON MULTI-LEVEL SEMANTIC ATTENTION MECHANISM

  • Qi Fangzhong, Zhuo Kexiang, Cao Jian
Author information +
文章历史 +

摘要

获得未来风电功率的短期概率性信息将有助于电网的综合能源调度,为此提出一种结合多层语义融合注意力机制的短期风电功率概率密度预测方法。为尽可能获得更多语义层下的编码信息,在编码阶段引入循环高速网络(RHN)并通过深层的RHN网络结构最大程度地提取输入特征的底层关联信息。设计多层语义融合注意力机制以融合不同语义层下的局部注意力向量,进一步加强编码特征向量的表达能力,并将网络的输出与分位数回归和核密度估计方法结合,得到不同分位点下未来短期风电功率的预测结果与连续概率密度分布。实验结果表明:提出的短期风电功率概率密度预测方法不论是在预测的得精度上,还是在具有不确定性的预测结果分布上均优于其他比较模型。

Abstract

Obtaining short-term probabilistic information of future wind power will improve the comprehensive energy dispatching of power grid. Therefore, a method of short-term wind power probability density prediction based on multi-level semantic attention mechanism is proposed. In order to obtain as much coding information as possible at the semantic level, Recurrent Highway Network (RHN) is introduced at the encoding stage. The underlying association information of input features is extracted to the maximum extent through the deep RHN network structure. A multi-level semantic attention mechanism is designed to integrate local attention vector under different semantic layers, which further strengthen the expression ability of coding feature vector. Combining the output of network with quantile regression and kernel density estimation methods, the prediction results and continuous probability density distribution of future short-term wind power are obtained. The experimental results show that the proposed method of short-term wind probability density prediction is superior to other comparison models, in terms of the accuracy of prediction value and the distribution of prediction results with uncertainty.

关键词

风电功率 / 深度学习 / 概率密度 / 分位数回归 / 循环高速网络

Key words

wind power / deep learning / probability density / quantile regression / recurrent highway network

引用本文

导出引用
綦方中, 卓可翔, 曹柬. 基于多层语义融合注意力机制的短期风电功率概率密度预测方法[J]. 太阳能学报. 2022, 43(11): 140-147 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0138
Qi Fangzhong, Zhuo Kexiang, Cao Jian. SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION METHOD BASED ON MULTI-LEVEL SEMANTIC ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 140-147 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0138
中图分类号: TM614   

参考文献

[1] 张博, 孙旭东, 刘颖, 等. 能源新技术新兴产业发展动态与2035战略对策[J]. 中国工程科学, 2020, 22(2): 1-160.
ZHANG B, SUN X D, LIU Y, et al.Development trends and strategic countermeasures of China’s emerging energy technology industry toward 2035[J]. Strategic study of CAE, 2020, 22(2): 1-160.
[2] 缪乐颖, 丁明, 车建峰, 等. 基于功率波动过程的风电功率短期预测及误差修正[J]. 电力系统自动化, 2019, 43(3): 2-12.
MIAO L Y, DING M, CHE J F, et al.Short-term forecasting and error corretion of wind power based on power fluctuation process[J]. Automation of electric power systems, 2019, 43(3): 2-12.
[3] KOU P, GAO F, GUAN X H.Stochastic predictive control of battery energy storage for wind farm dispatching: using probabilistic wind power forecasts[J]. Renewable energy, 2015, 80: 286-300.
[4] LUJANO-ROJAS J M, OSORIO G J, MATIAS J C O, et al. A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability[J]. Renewable energy, 2016, 87: 731-743.
[5] FOLEY A M, LEAHY P G, MARVUGLIA A, et al.Current methods and advances in forecasting of wind power generation[J]. Renewable energy, 2012, 37(1): 1-8.
[6] GIORGI M, FICARELLA A, TARANTINO M.Error analysis of short term wind power prediction models[J]. Applied energy, 2011, 88(4): 1298-1311.
[7] YANG M, CHEN X X, DU J, et al.Ultra-short-term multi-step wind power prediction based on improved EMD and reconstruction method using run-length analysis[J]. IEEE access, 2018(6): 31908-31917.
[8] 陈昊, 张建忠, 许超, 等. 基于多重离群点平滑转换自回归模型的短期风电功率预测[J]. 电力系统保护与控制, 2019, 47(1): 73-79.
CHEN H, ZHANG J Z, XU C, et al.Short-term wind power forecast based on MOSTAR model[J]. Power system protection and control, 2019, 47(1): 73-79.
[9] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 83-90.
JIANG G M, CHEN Z J, LI X Z, et al.Short-term prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta energiae solaris sinica, 2020, 41(5): 83-90.
[10] 刘家敏, 李聪睿, 周志浩, 等. 基于WD-CS-SVM的超短期风电功率组合预测[J]. 电力工程技术, 2019, 38(5): 24-29.
LIU J M, LI C R, ZHOU Z H, et al.Combination ultra-short-term prediction of wind power based on WD-CS-SVM[J]. Electric power engineering technology, 2019, 38(5): 24-29.
[11] 范高锋, 王伟胜, 刘纯, 等. 基于人工神经网络的风电功率预测[J]. 中国机电工程学报, 2008, 28(34): 118-123.
FAN G F, WANG W S, LIU C, et al.Wind power prediction based on artificial neural network[J]. Proceeding of the CSEE, 2008, 28(34): 118-123.
[12] 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020, 44(2): 445-453.
YIN H, OU Z H, CHEN D, et al.Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power system technology, 2020, 44(2): 445-453.
[13] 薛阳, 王琳, 王舒, 等. 一种结合CNN和GRU网络的超短期风电预测模型[J]. 可再生能源, 2019, 37(3): 456-462.
XUE Y, WANG L, WANG S, et al.An ultra-short-term wind power forecasting model combined with CNN and GRU networks[J]. Renewable energy resources, 2019, 37(3): 456-462.
[14] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56.
JIA R, YANG G H, ZHENG H F, et al.Combined wind power prediction method based on CNN-LSTM & GRU of adaptive weight[J]. Electric power, 2022, 55(5): 47-56.
[15] 赵征, 周孜钰, 南宏钢. 基于VMD的CNN-BiLSTM超短期风电功率多步区间预测[J]. 华北电力大学学报(自然科学版), 2022, 49(4): 91-97.
ZHAO Z, ZHOU Z Y, NAN H G.Research on multi-step interval forecasting of CNN-BiLSTM ultra-short-term wind power based on VMD[J]. Journal of North China Electric Power University(Natural Science Editiion), 2022, 49(4): 91-97.
[16] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.
ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecastrng method based on attention mechanism of CNN-GRV[J]. Power system technology, 2019, 43(12): 4370-4376.
[17] 胡枫, 吴义熔, 董方敏, 等. 高速简单循环单元网络[J]. 控制与决策, 2022, 37(2): 493-498.
HU F, WU Y R, DONG F M, et al.Highway-simple recurrent unit network[J]. Control and decision, 2022, 37(2): 493-498.
[18] ZILLY J G, SRIVASTAVA R K, KOUTNÍK J, et al. Recurrent highway networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017.
[19] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2016: 770-778.
[20] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J] . 中国电机工程学报, 2014, 34(29): 5029-5040.
XUE Y S, LEI X, XUE F, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[21] 杨茂, 代博祉, 刘蕾. 风电功率概率预测研究综述[J]. 东北电力大学学报, 2020, 40(2): 1-6.
YANG M, DAI B Z, LIU L.A review of wind power probabilistic prediction[J]. Journal of Northeast Electric Power University, 2020, 40(2): 1-6.
[22] KOENKER R, BASSETT G.Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
[23] 许启发, 蒋翠侠. 分位数局部调整模型及应用[J]. 数量经济技术经济研究, 2011, 28(8): 115-133.
XU Q F,JIANG C X.Quantile partial adjustment model and its application[J]. Journal of quantitative & technological economics, 2011, 28(8): 115-133.
[24] 吴问足, 乔颖, 鲁宗相, 等. 风电功率概率预测方法及展望[J]. 电力系统自动化, 2017, 41(18): 167-175.
WU W Z, QIAO Y, LU Z X, et al.Quantile partial adjustment model and its application[J]. Automation of electric power systems, 2017, 41(18): 167-175.

基金

国家自然科学基金(71874159)

PDF(2202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/