为有效改善蒸馏膜(MD)的高能耗问题,提出一种低能耗的太阳纳米光子蒸馏膜(NESMD)组件,对其热力学性能开展研究,并分析关键操作参数对其热力学特性的影响规律。研究结果表明,温度极化是导致MD技术高能耗的主要内因,NESMD组件采用面加热方式进行料液加热,不存在温度极化现象,因此具有显著的节能优势。在相同进料温度和进料速度下,NESMD组件相较于MD组件,温度极化系数和热效率均有显著提升,NESMD组件热效率受潜热影响最大,可采取低进料速度和高进料温度来提高热效率;当将聚乙烯醇(PVA)涂层作为功率输入段时,NESMD和MD组件均存在最佳输入段长度使得热效率最大;NESMD组件相较于MD组件具有更好的拓展性和更长的活性长度。上述性能规律为进一步优化结构提供了科学依据。
Abstract
In order to decrease the high energy consumption of the conventional membrane distillation (MD) technology, a novel Nanophotonics-enabled solar membrane distillation (NESMD) is proposed to substitute the MD, and its overall thermodynamic performance was studied through analyzing the key operational parameters influence on overall thermodynamic performance. The investigation results show that the volume heating to heat the feed liquid causes the temperature polarization and the correspondingly high energy consumption of MD component, and the NESMD component adopts the surface heating to heat the feed liquid, and there is no temperature polarization, so it demonstrates significant energy-saving advantages. Under the same feed temperature and feed speed, the temperature polarization coefficient and thermal efficiency of NESMD component are significantly improved compared with MD module. The thermal efficiency of NESMD component is most affected by of solvent latent heat, and the low feed speed and high feed temperature can be adopted to improve its thermal efficiency. When PVA coating is used as power input section, and the maximum thermal efficiency values are achieved at the optimal input section length for both NESMD and MD components. NESMD module has better expansibility and longer active length than these of the MD module. The above performance laws provide a scientific basis for further optimizing the structure.
关键词
太阳能 /
蒸馏膜 /
温度极化 /
纳米光子 /
热效率 /
活性长度
Key words
solar energy /
membrane distillation /
temperature polarization /
nano photonic /
thermal efficiency /
active length
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ROSSLING G, SACHSE A.Membrane distillation: US,US5110475 A[P]. 1992.
[2] LAWSON K W, LLOYD D R.Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation[J]. Journal of membrane science, 1996, 120(1): 111-121.
[3] DRIOLI E, ALI A, MACEDONIO F.Membrane distillation: recent developments and perspectives[J]. Desalination, 2015, 356: 56-84.
[4] ALI A, QUIST JENSEN C A, MACEDONIO F, et al. Optimization of module length for continuous direct contact membrane distillation process[J]. Chemical engineering and processing: process intensification, 2016, 110: 188-200.
[5] SUMMERS E K, LIENHARD V J H. A novel solar-driven air gap membrane distillation system[J]. Desalination and water treatment, 2013, 51(7/8/9): 1344-1351.
[6] POLITANO A, ARGURIO P, DI PROFIO G, et al.Photothermal membrane distillation for seawater desalination[J]. Advanced materials, 2017, 29(2): 1603504.
[7] DONGARE P D, ALABASTRI A, PEDERSEN S, et al.Nanophotonics-enabled solar membrane distillation for off-grid water purification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6936-6941.
[8] 高尚鹏. 聚偏氟乙烯光热纳米纤维膜的制备及脱盐应用[D]. 天津: 天津工业大学, 2019.
GAO S P.Preparation and desalination application of PVDF photothermal nanofiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2019.
[9] 李洪建, 杨晓宏, 田瑞, 等. 基于量纲分析的太阳能空气隙膜蒸馏实验研究[J]. 太阳能学报, 2016, 37(10): 2547-2553.
LI H J, YANG X H, TIAN R, et al.Experimental study of solar air gap membrane distillation based on dimensional analysis[J]. Acta energiae solaris sinica, 2016, 37(10): 2547-2553.
[10] 习成思, 张亮, 张高明, 等. 太阳能光热-光电真空膜蒸馏系统实验研究[J]. 太阳能学报, 2021, 42(12): 29-34.
XI C S, ZHANG L, ZHANG G M, et al.Experimental study on solar thermal and photovoltaic vacuum membrane distillation[J]. Acta energiae solaris sinica, 2021, 42(12): 29-34.
[11] ALKHUDHIRI A, DARWISH N, HILAL N.Membrane distillation: a comprehensive review[J]. Desalination, 2012, 287: 2-18.
[12] ZHANG J H, GRAY S, LI J D. Modelling heat and mass transfers in DCMD using compressible membranes[J]. Journal of membrane science, 2012, 387/388: 7-16.
[13] QTAISHAT M, MATSUURA T, KRUCZEK B, et al.Heat and mass transfer analysis in direct contact membrane distillation[J]. Desalination, 2008, 219(1/2/3): 272-292.
[14] PHATTARANAWIK J, JIRARATANANON R, FANE A G.Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation[J]. Journal of membrane science, 2003, 215(1/2): 75-85.
[15] ALI A, MACEDONIO F, DRIOLI E, et al.Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation[J]. Chemical engineering research and design, 2013, 91(10): 1966-1977.
[16] GRYTA M, TOMASZEWSKA M.Heat transport in the membrane distillation process[J]. Journal of membrane science, 1998, 144(1/2): 211-222.
[17] HITSOV I, MAERE T, DE SITTER K, et al.Modelling approaches in membrane distillation: a critical review[J]. Separation and purification technology, 2015, 142: 48-64.
[18] GRYTA M, TOMASZEWSKA M, MORAWSKI A W.Membrane distillation with laminar flow[J]. Separation and purification technology, 1997, 11(2): 93-101.
[19] KAKADE V U, LOCK G D, WILSON M, et al.Accurate heat transfer measurements using thermochromic liquid crystal. Part 2: application to a rotating disc[J]. International journal of heat and fluid flow, 2009, 30(5): 950-959.
[20] KHAYET M, VELÁZQUEZ A, MENGUAL J I. Modelling mass transport through a porous partition: effect of pore size distribution[J]. Journal of non-equilibrium thermodynamics, 2004, 29(3): 279-299.
基金
中央高校基本科研项目(NS2021016); 江苏省自然科学基金面上项目(BK20191276)