改进的单相三电平PWM整流器中点电位平衡模型预测控制

张笛, 崔晶, 林辉, 宋智威

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 125-131.

PDF(3383 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3383 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 125-131. DOI: 10.19912/j.0254-0096.tynxb.2022-0749

改进的单相三电平PWM整流器中点电位平衡模型预测控制

  • 张笛1, 崔晶1, 林辉1, 宋智威2
作者信息 +

IMPROVED MIDPOINT POTENTIAL BALANCE MODEL PREDICTION CONTROL FOR SINGLE-PHASE THREE-LEVEL PWM RECTIFIER

  • Zhang Di1, Cui Jing1, Lin Hui1, Song Zhiwei2
Author information +
文章历史 +

摘要

针对单相三电平脉冲整流器存在中点电位不平衡问题,提出一种评价函数,在模型预测算法的基础上增加了一个评价因子,在无需额外的中点电位平衡模块条件下实现了单相三电平脉冲整流器中点电位平衡。为降低硬件设计成本,提高电路可靠性,采用无网压传感器算法,但传统的无网压传感器会因引入一阶低通滤波器而产生相位偏移和幅值衰减的问题;为解决相位和幅值问题,提出一种改进的无网压传感器算法,利用α-β的垂直关系进行幅值和相位补偿,得到无相位偏移和幅值衰减的网侧交流电压。通过实验验证了所提控制方法的正确性和有效性。

Abstract

An evaluation function is proposed to solve the problem of midpoint potential imbalance in single-phase three-level pulse rectifier. Based on the model prediction algorithm, an evaluation factor is added to realize the midpoint potential balance of single-phase three-level pulsed rectifier without additional midpoint potential balance module. In order to reduce the cost of hardware design and improve the reliability of the circuit, the gridless pressure sensor algorithm is used. the traditional gridless pressure sensor has the problem of phase shift and amplitude attenuation due to the introduction of first-order low-pass filter. To solve the problem of phase shift and amplitude attenuation, an improved gridless pressure sensor algorithm is proposed, which uses the vertical relationship of α-β to compensate the amplitude and phase. The network-side AC voltage without phase shift and amplitude attenuation is obtained. The experimental results demonstrate the correctness and effectiveness of the proposed algorithm.

关键词

电力整流器 / 脉宽调制 / 谐波分析 / 预测控制系统 / 分布式发电

Key words

electric rectifiers / pulse width modulation / harmonic analysis / predictive control systems / distributed power generation

引用本文

导出引用
张笛, 崔晶, 林辉, 宋智威. 改进的单相三电平PWM整流器中点电位平衡模型预测控制[J]. 太阳能学报. 2024, 45(6): 125-131 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0749
Zhang Di, Cui Jing, Lin Hui, Song Zhiwei. IMPROVED MIDPOINT POTENTIAL BALANCE MODEL PREDICTION CONTROL FOR SINGLE-PHASE THREE-LEVEL PWM RECTIFIER[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 125-131 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0749
中图分类号: TM461   

参考文献

[1] 李继方, 冯硕, 石晓阳, 等.基于分布式发电的储能系统能量管理策略[J]. 太阳能学报, 2023, 44(8): 30-38.
LI J F, FENG S, SHI X Y, et al.Energy management strategy for energy storage system based on distributed generation[J]. Acta energiae solaris sinica, 2023, 44(8): 30-38.
[2] 王晓兰, 王科祖. 基于LMI的直流微电网分布式鲁棒H控制[J]. 太阳能学报, 2022, 43(5): 45-52.
WANG X L, WANG K Z.Distributed robust H control in DC microgrid based on linear matrix inequaliitieS[J]. Acta energiae solaris sinica, 2022, 43(5): 45-52.
[3] 周振雄, 刘丙申, 王文保, 等. 基于虚拟磁链DPC的电压型整流器控制系统研究[J]. 太阳能学报, 2022, 43(2): 136-143.
ZHOU Z X, LIU B S, WANG W B, et al.Research on direct power control of voltage-type rectifier based on virtual magnetic flux model prediction[J]. Acta energiae solaris sinica, 2022, 43(2): 136-143.
[4] DAHONO P A, KRISBIANTORO I.A hysteresis current controller for single-phase full-bridge inverters[C]//4th IEEE International Conference on Power Electronics and Drive Systems, Denpasar, Indonesia, 2002: 415-419.
[5] 宋卫章, 黄骏, 钟彦儒, 等. 带中点电位平衡控制的Vienna整流器滞环电流控制方法[J]. 电网技术, 2013, 37(7): 1909-1914.
SONG W Z, HUANG J, ZHONG Y R, et al.A hysteresis current control method with neutral point potential balancing control for Vienna rectifier[J]. Power system technology, 2013, 37(7): 1909-1914.
[6] 孟建辉, 石新春, 付超, 等. 基于PR控制的光伏并网电流优化控制[J]. 电力自动化设备, 2014, 34(2): 42-47.
MENG J H, SHI X C, FU C, et al.Optimal control of photovoltaic grid-connected current based on PR control[J]. Electric power automation equipment, 2014, 34(2): 42-47.
[7] 王萍, 闫瑞涛. 一种单相PWM整流器动态性能优化控制策略[J]. 太阳能学报, 2020, 41(8): 102-107.
WANG P, YAN R T.An optimal control strategy of dynamic performance for single-phase PWM rectifier[J]. Acta energiae solaris sinica, 2020, 41(8): 102-107.
[8] 王久和, 李华德, 王立明. 电压型PWM整流器直接功率控制系统[J]. 中国电机工程学报, 2006, 26(18): 54-60.
WANG J H, LI H D, WANG L M.Direct power control system of three phase boost type PWM rectifiers[J]. Proceedings of the CSEE, 2006, 26(18): 54-60.
[9] MALINOWSKI M, KAZMIERKOWSKI M P, HANSEN S, et al.Virtual-flux-based direct power control of three-phase PWM rectifiers[J]. IEEE transactions on industry applications, 2001, 37(4): 1019-1027.
[10] 杨勇, 阮毅, 汤燕燕, 等. 基于锁相环和虚拟电网磁链的三相并网逆变器[J]. 电工技术学报, 2010, 25(4):109-114.
YANG Y, RUAN Y, TANG Y Y, et al.Three-phase grid-connected inverters based on PLL and virtual grid flux[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 109-114.
[11] THIELEMANS S, MELKEBEEK J, VYNCKE T J.Weight factor selection for model-based predictive control of a four-level flying-capacitor inverter[J]. IET power electronics, 2012, 5(3): 323-333.
[12] TARISCIOTTI L, ZANCHETTA P, WATSON A, et al.A comparison between dead-beat and predictive control for a 7-level back-to-back Cascaded H-Bridge under fault conditions[C]//2013 IEEE Energy Conversion Congress and Exposition. Denver, CO, USA, 2013: 2147-2154.
[13] 程志江, 田峰, 杨涵棣, 等. 模块化多电平复合变换器电池储能系统模型预测优化控制策略[J]. 太阳能学报, 2023, 44(5): 59-66.
CHENG Z J, TIAN F, YANG H D, et al.Model predictive optimal control strategy for modular multilevel hybrid converter battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(5): 59-66.

基金

陕西省教育厅一般专项科学研究计划项目(23JK0622); 陕西省教育厅高等教育教学改革研究项目(21GY021)

PDF(3383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/