研究一种以钛酸锂氧化物(LTO)为负极材料的锂离子电池,对电池在不同倍率下的性能以及温升情况进行研究,并对电池在66C(C为最大容量)的放电倍率下进行连续循环放电测试,通过实验可得:电池在66C状态下达到最大温升,最高温度51.72 ℃,达到最大温差25.65 ℃,其中最大产热率为739.97 W,66C放电倍率下电池放电深度仅为总电量的42%,随着循环次数以及放电倍率的增加,电池的内阻呈逐渐减小的趋势,最小为0.63 mΩ。最后根据电池在高倍率下的循环放电,对卡尔曼滤波算法进行改进,应用扩展卡尔曼滤波算法对电池的容量衰减进行预测,验证了此算法在高倍率放电情况下的适用程度,误差最大控制在0.05以内,达到了良好效果。
Abstract
In this paper, a lithium-ion battery with lithium titanite oxide (LTO) as the anode material is investigated. This paper investigates the electrical performance and temperature rise of batteries at different multipliers and tests them at 66C (C is the maximum capacity) in continuous cycles. The experiments concluded that the battery reached its maximum temperature rise at 66C, with a maximum temperature of 51.72 ℃ and a maximum temperature difference of 25.65 ℃, of which the maximum heat production rate was 739.97 W. The discharge depth of the battery at 66C discharge rate is only 42% of the total charge. As the number of cycles and discharge rate increase, the internal resistance of the battery shows a gradually decreasing trend, reaching a minimum of 0.63 mΩ. Finally, the Kalman filter algorithm was improved by applying the extended Kalman filter algorithm to predict the capacity decay of the battery based on the cyclic discharge of the battery at a high rate, and the applicability of this algorithm was verified under the high rate of discharge. The maximum error is within 0.05, which is a good result.
关键词
锂离子电池 /
高倍率放电 /
热特性 /
内阻变化 /
扩展卡尔曼滤波 /
LTO阳极电池
Key words
lithium ion battery /
high rate discharge /
thermal characteristics /
internal resistance change /
extended Kalman filter /
LTO anode battery
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈川杰, 赵建伟, 梁一林, 等. 导弹、运载火箭用高倍率锂离子电池过放电概率的研究[J]. 科技与创新, 2018(10): 88-89.
SHEN C J, ZHAO J W, LIANG Y L, et al.Study on overdischarge probability of high-rate lithium-ion batteries for missiles and launch vehicles[J]. Science and technology & innovation, 2018(10): 88-89.
[2] 王伟. 可再生能源并网系统中电池储能系统特性及优化[D]. 济南: 山东大学, 2022.
WANG W.Characteristics and optimization of the battery energy storage system in the renewable energy grid-connected system[D]. Ji'nan: Shandong University, 2022.
[3] 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5): 446-453.
YU L, ZHANG H, TIAN P G, et al.A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta energiae solaris sinica, 2022, 43(5): 446-453.
[4] 闫湖, 黄碧斌, 李琼慧, 等. 退役动力电池政策智能模拟方法研究[J]. 太阳能学报, 2022, 43(4): 30-35.
YAN H, HUANG B B, LI Q H, et al.Research on intelligent pre-evaluation of retirement power battery policy[J]. Acta energiae solaris sinica, 2022, 43(4): 30-35.
[5] 张文佳, 尹莲芳, 谢乐琼, 等. 影响高功率锂离子电池性能的因素[J]. 新材料产业, 2022(1): 62-64.
ZHANG W J, YIN L F, XIE L Q, et al.Factors affecting the performance of high power lithium ion batteries[J]. Advanced materials industry, 2022(1): 62-64.
[6] 陈港欣, 孙现众, 张熊, 等. 高功率锂离子电池研究进展[J]. 工程科学学报, 2022, 44(4): 612-624.
CHEN G X, SUN X Z, ZHANG X, et al.Progress of high-power lithium-ion batteries[J]. Chinese journal of engineering, 2022, 44(4): 612-624.
[7] WANG C, LIU Z H, SUN Y H, et al.Aging behavior of lithium titanate battery under high-rate discharging cycle[J]. Energies, 2021, 14(17): 5482.
[8] VORONOV S, FRISK E, KRYSANDER M.Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks[J]. IEEE transactions on reliability, 2018, 67(2): 623-639.
[9] HOSEN M S, JAGUEMONT J, VAN M IERLO J, et al. Battery lifetime prediction and performance assessment of different modeling approaches[J]. iScience, 2021, 24(2): 102060.
[10] 周礼. 电动汽车锂离子电池温度性能研究[J]. 专用汽车, 2022(5): 15-17.
ZHOU L.Study on temperature performance of lithium-ion battery for electric vehicle[J]. Special purpose vehicle, 2022(5): 15-17.
[11] 王德顺, 薛金花, 鲁千姿, 等. 电力储能用锂离子电池状态评估研究进展[J]. 电源技术, 2022, 46(3): 230-232.
WANG D S, XUE J H, LU Q Z, et al.Research progress on state assessment of lithium-ion batteries for power storage[J]. Chinese journal of power sources, 2022, 46(3): 230-232.
[12] HAMISI C M, CHOMBO P V, LAOONUAL Y, et al.An electrothermal model to predict thermal characteristics of lithium-ion battery under overcharge condition[J]. Energies, 2022, 15(6): 2284.
[13] HALES A, MARZOOK M W, DIAZ L B, et al.The surface cell cooling coefficient: a standard to define heat rejection from lithium ion battery pouch cells[J]. Journal of the electrochemical society, 2020, 167(2): 020524.
[14] HU Y, CHOE S Y, GARRICK T R.Measurement of heat generation rate and heat sources of pouch type Li-ion cells[J]. Applied thermal engineering, 2021, 189: 116709.
[15] SPITTHOFF L, SHEARING P R, BURHEIM O S.Temperature, ageing and thermal management of lithium-ion batteries[J]. Energies, 2021, 14(5): 1248.
[16] SAHA B, GOEBEL K, POLL S, et al.Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE transactions on instrumentation and measurement, 2009, 58(2): 291-296.
[17] 陈冰, 鲁刚, 房红征, 等. 基于等效模型和多时间尺度扩展卡尔曼滤波的锂离子电池SOC预测[J]. 计算机测量与控制, 2017, 25(5): 67-70.
CHEN B, LU G, FANG H Z, et al.SOC prediction of lithium-ion batteries based on equivalent circuit model and multi-time scale extended Kalman filter[J]. Computer measurement & control, 2017, 25(5): 67-70.
[18] GAVRILIN I M, KUDRYASHOVA Y O, KUZ′MINA A, et al. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries[J]. Journal of electroanalytical chemistry, 2021, 888: 115209.
基金
国家自然科学基金(61143007); 中国-北马其顿政府间科技合作项目(国科外[2019]22: 6-8)