基于主从博弈理论的热电联供型太阳能热发电站冬季优化运行研究

张晓英, 陈宝奇, 马志程, 周强

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 155-165.

PDF(2072 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2072 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 155-165. DOI: 10.19912/j.0254-0096.tynxb.2022-0936

基于主从博弈理论的热电联供型太阳能热发电站冬季优化运行研究

  • 张晓英1, 陈宝奇1, 马志程2, 周强2
作者信息 +

STUDY ON OPTIMAL OPERATION OF SOLAR THERMAL POWER PLANT BASED ON LEADER-FOLLOWER GAME THEORY IN WINTER

  • Zhang Xiaoying1, Chen Baoqi1, Ma Zhicheng2, Zhou Qiang2
Author information +
文章历史 +

摘要

针对西北地区冬季的风光资源情况以及供热需求,考虑太阳能热发电站的热电联供功能以及共享储能的发展,提出一种基于主从博弈理论的电-热综合能源系统优化运行方法。首先,介绍电-热综合能源系统的构成;其次,建立热电联供型太阳能热发电站、共享储能以及用户的模型;再次,搭建能源运营商和用户聚合商之间的主从博弈模型;最后,根据西北某光热新能源基地冬季实测数据进行算例仿真,通过Gurobi学术版与启发式算法相结合的方法优化系统运行。结果表明:所建模型不仅能实现能源运营商和用户聚合商双方均获得收益,且可为碳中和背景下供热需求的解决提供新的方案。

Abstract

Aiming at the situation of wind and solar resources and heating demand in northwest China in winter, considering the combined heat and power function of photothermal power station and the development of shared energy storage, an optimal operation method of electric-thermal integrated energy system based on leader-follower game theory is proposed. Firstly, the composition of electric-thermal integrated energy system is introduced. Secondly, the models of combined heat and power type photothermal power station, shared energy storage and users are established. Next, build a leader-follower game model between energy operators and user aggregators. finally, according to the winter measured data of a photothermal new energy base in Northwest China, the example simulation is carried out, and the system operation is optimized by the combination of Gurobi academic version and heuristic algorithm. The results show that the model can not only realize the benefits of both energy operators and user aggregators, but also provide a new solution to the heating demand under the background of carbon neutrality.

关键词

太阳能热发电 / 集中供热 / 博弈论 / 优化运行 / 共享储能

Key words

concentrating solar power / district heating / game theory / optimization / shared energy storage

引用本文

导出引用
张晓英, 陈宝奇, 马志程, 周强. 基于主从博弈理论的热电联供型太阳能热发电站冬季优化运行研究[J]. 太阳能学报. 2023, 44(11): 155-165 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0936
Zhang Xiaoying, Chen Baoqi, Ma Zhicheng, Zhou Qiang. STUDY ON OPTIMAL OPERATION OF SOLAR THERMAL POWER PLANT BASED ON LEADER-FOLLOWER GAME THEORY IN WINTER[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 155-165 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0936
中图分类号: TM761   

参考文献

[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU X X, CHEN S Y, LU Z X, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[2] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8.
SUN H B, GUO Q L, PAN Z G.Energy internet: concept, architecture and frontier outlook[J]. Automation of electric power systems, 2015, 39(19): 1-8.
[3] 丁涛, 牟晨璐, 别朝红, 等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报, 2018, 38(15): 4318-4328, 4632.
DING T, MU C L, BIE Z H, et al.Review of energy internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4318-4328, 4632.
[4] MOHSENIAN-RAD H.Coordinated price-maker operation of large energy storage units in nodal energy markets[J]. IEEE transactions on power systems, 2016, 31(1): 786-797.
[5] 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36(21): 5765-5775, 6019.
DU E S, ZHANG N, KANG C Q, et al.Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21): 5765-5775, 6019.
[6] 国家电网. 推进综合能源服务业务发展2019—2020年行动计划[EB/OL]. [2021-04-25].https://news.bjx.com.cn/html/20190225/964916.shtml.
State Grid. Action plan for promoting the development of comprehensive energy services business from2019 to 2020[EB/OL].[2021-04-25]. https://news.bjx.com.cn/html/20190225/964916.shtml.
[7] 董海鹰, 房磊, 丁坤, 等. 基于热电联产运行模式的光热发电调峰策略[J]. 太阳能学报, 2019,40(10): 2763-2772.
DONG H Y, FANG L, DING K, et al.Peak regulation strategy of CSP plants based on operation mode of cogeneration[J]. Acta energiae solaris sinica, 2019, 40(10): 2763-2772.
[8] 陈润泽, 孙宏斌, 李正烁, 等. 含储热太阳能热发电站的电网调度模型与并网效益分析[J]. 电力系统自动化, 2014, 38(19): 1-7.
CHEN R Z, SUN H B, LI Z S, et al.Grid dispatch model and interconnection benefit analysis of concentrating solar power plants with thermal storage[J]. Automation of electric power systems, 2014,38(19): 1-7.
[9] 张尧翔, 刘文颖, 李潇, 等. 高比例新能源接入电网光热发电-火电联合调峰优化控制方法[J]. 电力自动化设备, 2021, 41(4): 1-7, 32.
ZHANG Y X, LIU W Y, LI X, et al.Optimal control method of peak load regulation combined concentrating solar power and thermal power for power grid accessed with high proportion of renewable energy[J]. Electric power automation equipment, 2021, 41(4): 1-7, 32.
[10] 熊伟, 马志程, 张晓英, 等. 计及风、光消纳的风电-光伏-光热互补发电二层优化调度[J]. 太阳能学报, 2022, 43(7): 39-48.
XIONG W, MA Z C, ZHANG X Y, et al.Two-layer optimal dispatch of WF-PV-CSP hybrid power generation considering wind power and photovoltaic consumption[J]. Acta energiae solaris sinica, 2022, 43(7): 39-48.
[11] 崔杨, 张家瑞, 仲悟之, 等. 计及电热转换的含储热太阳能热发电站与风电系统优化调度[J]. 中国电机工程学报, 2020, 40(20): 6482-6494.
CUI Y, ZHANG J R, ZHONG W Z, et al.Optimal scheduling of concentrating solar power plant with thermal energy storage and wind farm considering electric-thermal conversion[J]. Proceedings of the CSEE, 2020, 40(20): 6482-6494.
[12] 董海鹰, 贠韫韵, 马志程, 等. 计及多能转换及太阳能热发电站参与的综合能源系统低碳优化运行[J]. 电网技术, 2020, 44(10): 3689-3700.
DONG H Y, YUN Y Y, MA Z C, et al.Low-carbon optimal operation of integrated energy system considering multi-energy conversion and concentrating solar power plant participation[J]. Power system technology, 2020, 44(10): 3689-3700.
[13] 彭院院. 考虑光热发电特性的虚拟电厂及热电联供系统优化调度研究[D]. 长沙: 长沙理工大学, 2020.
PENG Y Y.Research on optimal scheduling of virtual power plant and combined heat and power system considering the characteristics of concentrating solar power[D]. Changsha:Changsha University of Science & Technology, 2020.
[14] 崔杨, 陈志, 严干贵, 等. 基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型[J]. 中国电机工程学报, 2016, 36(15): 4072-4081.
CUI Y, CHEN Z, YAN G G, et al.Coordinated wind power accommodating dispatch model based on electric boiler and CHP with thermal energy storage[J]. Proceedings of the CSEE, 2016, 36(15): 4072-4081.
[15] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247, 7450.
SHUI Y, LIU J Y, GAO H J,et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 7235-7247, 7450.
[16] 杨德友, 西禹霏, 蔡国伟, 等. 电热泵与燃气锅炉辅助方式下电-热-风耦合调度策略研究[J]. 太阳能学报, 2019, 40(10): 2986-2993.
YANG D Y, XI Y F, CAI G W, et al.Study on coupling dispatch of combined power-heat-wind system with electric heat pump and gas-fired boiler[J]. Acta energiae solaris sinica, 2019, 40(10): 2986-2993.
[17] 王佳颖, 史俊祎, 文福拴, 等. 计及需求响应的太阳能热发电站热电联供型微网的优化运行[J]. 电力系统自动化, 2019, 43(1): 176-185.
WANG J Y, SHI J Y, WEN F S, et al.Optimal operation of CHP microgrid with concentrating solar power plants considering demand response[J]. Automation of electric power systems, 2019, 43(1): 176-185.
[18] QI F, WEN F S, LIU X Y, et al.A residential energy hub model with a concentrating solar power plant and electric vehicles[J]. Energies, 2017,10(8): 1159.
[19] 杨宏基, 周明, 武昭原, 等. 含太阳能热发电站的电-热能源系统优化运行机制[J]. 电网技术, 2022, 46(1): 175-185.
YANG H J, ZHOU M, WU Z Y, et al.Optimal operation of electro-thermal energy systems with concentrated solar power plant[J]. Power system technology, 2022, 46(1): 175-185.
[20] 财政部, 国家发展改革委, 国家能源局. 关于促进非水可再生能源发电健康发展的若干意见(财建(2020)4号)[EB/OL]. [2021-03-25]. http://www.szguanjia.cn/article/1523.
Ministry of Finance, National Development and Reform Commission, National Energy Administration. Several opinions on promoting the healthy development of non aqueous renewable energy power generation (Cai Jian (2020)No. 4)[EB/OL]. [2021-03-25]. http://www.szguanjia.cn/article/1523.
[21] 国家发展改革委, 国家能源局. 关于印发各省级行政区域2020 年可再生能源电力消纳责任权重的通知(发改能源(2020)767号). [EB/OL]. [2021-04-20]. http://www.nea.gov.cn/2020-06/01/c_ 139105253.htm.
National Development and Reform Commission, National Energy Administration. Notice on issuing the weights of renewable energy power consumption responsibility for each provincial administrative region in 2020 (NDRC Energy(2020) No. 767). [EB/OL]. [2021-04-20]. http://www.nea.gov.cn/2020-06/01/c_ 139105253.htm.
[22] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8.
SUN H B, GUO Q L, PAN Z G.Energy internet: concept,architecture and frontier outlook[J]. Automation of electric power systems, 2015, 39(19): 1-8.
[23] 马丽, 刘念, 张建华, 等. 基于主从博弈策略的社区能源互联网分布式能量管理[J]. 电网技术, 2016, 40(12): 3655-3662.
MA L, LIU N, ZHANG J H, et al.Distributed energy management of community energy internet based on leader-followers game[J]. Power system technology, 2016, 40(12): 3655-3662.
[24] MA L, LIU N, ZHANG J H, et al.Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: a game theoretic approach[J]. IEEE transactions on industrial informatics, 2016, 12(5): 1930-1942.
[25] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020,40(17): 5435-5445.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5445.
[26] LIU N, HE L, YU X H, et al.Multiparty energy management for grid-connected microgrids with heat- and electricity-coupled demand response[J]. IEEE transactions on industrial informatics, 2018,14(5): 1887-1897.
[27] LIU N, YU X H, WANG C, et al.Energy sharing management for microgrids with PV prosumers: a stackelberg game approach[J]. IEEE transactions on industrial informatics, 2017,13(3): 1088-1098.
[28] 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2): 679-690.
SHUAI X Y, MA Z C, WANG X L, et al.Optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory[J]. Power system technology, 2023, 47(2): 679-690.
[29] 郑联盛. 共享经济:本质、机制、模式与风险[J]. 国际经济评论, 2017(6): 45-69, 5.
ZHENG L S.Sharing economy: essence, mechanism, models and risks[J]. International economic review, 2017(6): 45-69, 5.
[30] 崔杨, 姜涛, 仲悟之, 等. 考虑风电消纳的区域综合能源系统源荷协调经济调度[J]. 电网技术, 2020, 44(7): 2474-2483.
CUI Y, JIANG T, ZHONG W Z, et al.Source-load coordination economic dispatch method for regional integrated energy system considering wind power accommodation[J]. Power system technology, 2020, 44(7): 2474-2483.
[31] 杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48(10): 30-37.
YANG H Z, LI M L, JIANG Z Y, et al.Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power system protection and control, 2020, 48(10): 30-37.
[32] 赵雪霖, 何光宇. 生活电器用电效用概念及其评估方法[J]. 电力系统自动化, 2016, 40(1): 53-59.
ZHAO X L, HE G Y.Power utility evaluation of residential electrical appliances[J]. Automation of electric power systems, 2016, 40(1): 53-59.
[33] 吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg 博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018,42(4): 142-150, 207.
WU L L, JING Z X, WU Q H, et al.Equilibrium strategies for integrated energy systems based on Stackelberg game model[J]. Automation of electric power systems, 2018, 42(4): 142-150, 207.
[34] 邓喜才, 郭华华. 两阶段主从博弈均衡解的存在性[J]. 经济数学, 2009, 26(4): 50-53.
DENG X C, GUO H H.Existence of the equilibrium solution of a two-stage leaders-followers game[J]. Mathematics in economics, 2009, 26(4): 50-53.

基金

甘肃省科技重大专项计划(19ZD2GA003)

PDF(2072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/