针对虚拟同步机(VSG)控制的双馈风电机组(DFIG)中由模型阶数过高导致的动态性能指标和参数优化求解困难的问题,兼顾稳定性与动态性能,提出一种改进的劳斯赫尔维茨与帕德近似结合的模型降阶方法。首先,建立DFIG-VSG系统的数学模型,基于此提出一种转子电流前馈补偿解耦的双环控制策略;然后,建立DFIG-VSG并网系统的小信号模型,得到对应的高阶闭环传递函数。基于该文提出的模型降阶方法对DFIG-VSG高阶传递函数进行降阶可得到输出有功功率的二阶传递函数,并进一步通过约束动态参数与稳定裕度得出一套控制参数选取范围,在该选取范围内通过根轨迹法分析主要控制参数对DFIG-VSG并网系统的影响。在不同风速工况下,通过Matlab/Simulink仿真验证了所提方法的可行性。
Abstract
Aiming at the difficult problem of dynamic performance index and parameter optimization in a doubly fed induction generator (DFIG) controlled by a virtual synchronous generator (VSG) based wind turbines, which is difficult to solve due to the high order of the model, taking into account stability and dynamic performance, an improved model reduction method of the approximate combination of Routh Hurwitz and Pade approximations method is proposed. Firstly, the mathematical model of DFIG-VSG is established, and a double-loop control strategy for the decoupling of rotor current feedforward compensation is proposed. Then the small signal model of the DFIG-VSG grid-connected system is established, and the corresponding high-order closed-loop transfer function is obtained. Based on the model reduction method proposed in this paper, the second-order transfer function of the output active power can be obtained by reducing the DFIG-VSG high-order transfer function, and a set of control parameter selection ranges can be obtained by constraining the dynamic parameters and stability margin, and the influence of the main control parameters on the DFIG-VSG grid-connected system is analyzed by the root trajectory method in this selection range. Under different wind speed conditions, Matlab/Simulink simulation verifies the feasibility of the proposed method.
关键词
虚拟同步机 /
双馈风电机组 /
小信号模型 /
模型降阶 /
控制参数选取
Key words
virtual synchronous generator /
doubly-fed induction generator based wind turbines /
small signal model /
model reduction /
control parameters selection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 柴建云, 赵杨阳, 孙旭东, 等. 虚拟同步发电机技术在风力发电系统中的应用与展望[J]. 电力系统自动化, 2018, 42(9): 17-25, 68.
CHAI J Y, ZHAO Y Y, SUN X D, et al.Application and prospect of virtual synchronous generator in wind power generation system[J]. Automation of electric power systems, 2018, 42(9): 17-25, 68.
[2] 年珩, 宋亦鹏. 谐波电网下基于矢量比例积分电流调节器的双馈异步发电机运行控制技术[J]. 中国电机工程学报, 2013, 33(6): 101-111, 15.
NIAN H, SONG Y P.DFIG operation control strategy under distorted grid conditions based on VPI current regulators[J]. Proceedings of the CSEE, 2013, 33(6): 101-111, 15.
[3] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26, 33.
TIAN X S, WANG W S, CHI Y N, et al.Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of electric power systems, 2015, 39(5): 20-26, 33.
[4] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603.
LYU Z P, SHENG W X, ZHONG Q C, et al.Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603.
[5] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[6] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360.
LYU Z P, SHENG W X, LIU H T, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360.
[7] 盛万兴, 吕志鹏, 崔健, 等. 虚拟同步机运行区域计算与参数分析[J]. 电网技术, 2019, 43(5): 1557-1565.
SHENG W X, LYU Z P, CUI J, et al.Operation area calculation and parameter analysis of virtual synchronous generator[J]. Power system technology, 2019, 43(5): 1557-1565.
[8] KHAN S, BLETTERIE B, ANTA A, et al.On small signal frequency stability under virtual inertia and the role of PLLs[J]. Energies, 2018, 11(9): 2372.
[9] DU Y, GUERRERO J M, CHANG L C, et al.Modeling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications[C]//2013 IEEE ECCE Asia Downunder, Melbourne, Australia, 2013: 643-649.
[10] 孙大卫, 刘辉, 高舜安, 等. 电流控制型虚拟同步发电机的小信号建模与稳定性分析[J]. 电网技术, 2018, 42(9): 2983-2993.
SUN D W, LIU H, GAO S A, et al.Small-signal modeling and stability analysis of current-controlled virtual synchronous generators[J]. Power system technology, 2018, 42(9): 2983-2993.
[11] SAMBARIYA D, MANOHAR H.Preservation of stability for reduced order model of large scale systems using differentiation method[J]. British journal of mathematics & computer science, 2016, 13(6): 1-17.
[12] ALSMADI O M K, ABO-HAMMOUR Z S. A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms[J]. Computational intelligence and neuroscience, 2015, 2015: 615079.
[13] NARWAL A, PRASAD B R.A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation[J]. IETE journal of research, 2016, 62(2): 154-163.
[14] FENG H, LUKIC S M.Reduced-order modeling and design of single-stage LCL compensated IPT system for low voltage vehicle charging applications[J]. IEEE transactions on vehicular technology, 2020, 69(4): 3728-3739.
[15] LI H C, WANG K P, HUANG L, et al.Dynamic modeling based on coupled modes for wireless power transfer systems[J]. IEEE transactions on power electronics, 2015, 30(11): 6245-6253.
[16] SAMBARIYA D K, ARVIND G.Reduced order model of single machine infinite bus power system using stability equation method and self-adaptive bat algorithm[J]. Universal journal of control and automation, 2016, 4(1): 1-7.
[17] PRAJAPATI A K, PRASAD R.Order reduction of linear dynamic systems with an improved routh stability method[C]//2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, India, 2018: 362-367.
[18] SINGH R, MISHRA V M, SINGH J.Model order reduction via routh hurwitz array and improved pade approximations[C]//2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC). Greater Noida, India, 2019: 755-758.
[19] 胡寿松. 自动控制原理[M]. 6版. 北京: 科学出版社, 2013:79-113.
HU S S.Principle of automatic control[M]. 6th ed. Beijing: Science Press, 2013: 79-113.
基金
国家自然科学基金(52007124); 辽宁省揭榜挂帅科技攻关专项(2021JH1/10400009); 辽宁省“兴辽英才计划”(XLYC1802041)