针对5 MW ITI Barge型漂浮式风电机组,该文利用动力学模型和多种群遗传算法配合寻求机舱中调谐质量阻尼器(TMD)各参数最优解。首先,基于拉格朗日方程建立含TMD的风电机组动力学模型,采用列文伯格-马夸尔特(LM)算法对模型中未知参数辨识;其次,以塔架纵向位移标准差为目标函数,采用多种群遗传算法和动力学模型配合对TMD各参数寻优。最后,按照最优解重新设计TMD参数,分别在5种典型风浪组合载荷工况下,利用FAST全耦合模型验证TMD的减载效果。结果显示:优化参数后的TMD能够有效降低Barge型漂浮式风电机组的关键部位的疲劳载荷。对比无TMD控制时,塔架纵向位移标准差降低约6%~48%;塔根纵向弯矩标准差降低约10%~45%;叶根纵向弯矩标准差降低约11%~33%。
Abstract
For the 5 MW ITI Barge floating wind turbine, this paper utilizes the dynamic model and multi-population genetic algorithm to determine the optimal values of each parameter of Tuned mass damper (TMD) in nacelle. To begin with, the Lagrange equation was employed to establish the dynamic model of the turbine incorporating TMD, followed by the utilization of the Levenberg-Marquardt (LM) algorithm to identify the unknown parameters within the dynamic model. Subsequently, the optimization of TMD parameters was carried out using a multi-population genetic algorithm and dynamic model, with the objective function being the standard deviation of the tower's vertical displacement. Finally, TMD parameters were redesigned according to the optimal solution, and the load reducing effect of TMD was verified by the full coupled FAST model under five typical wind-wave combined load conditions. The results show that the TMD with optimized parameters could effectively reduce the fatigue load of the Barge floating turbine. In comparison to the control scenario without TMD, the utilization of TMD results in a reduction of approximately 6% to 48% in the standard deviation of the tower longitudinal displacement. Similarly, the standard deviation of the tower root longitudinal bending moment decreases by approximately 10% to 45%. The standard deviation of blade root longitudinal bending moment decreases by about 11%-33%.
关键词
海上风电机组 /
动力学模型 /
全局优化 /
调谐质量阻尼器
Key words
offshore wind turbines /
dynamic models /
global optimization /
tuned mass damper
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[2] 宋子秋, 冯翰宇, 余照国, 等. 基于模型预测控制的半潜漂浮式风机协调控制方法研究[J]. 中国电机工程学报, 2022, 42(12): 4330-4339.
SONG Z Q, FENG H Y, YU Z G, et al.Coordinated control of semi-submersible floating turbine with model predictive control strategy[J]. Proceedings of the CSEE, 2022, 42(12): 4330-4339.
[3] XIE S Y, JIN X, HE J A, et al.Structural responses suppression for a barge-type floating wind turbine with a platform-based TMD[J]. IET renewable power generation, 2019, 13(13): 2473-2479.
[4] 金鑫, 王亚明, 李浪, 等. 基于LQG的独立变桨控制技术对风电机组气动载荷影响研究[J]. 中国电机工程学报, 2016, 36(22): 6164-6170.
JIN X, WANG Y M, LI L, et al.Dynamics loads optimization analysis of wind turbine based on LQG independent pitch control[J]. Proceedings of the CSEE, 2016, 36(22): 6164-6170.
[5] MAGAR K T, BALAS M J, FROST S.Direct adaptive control for individual blade pitch control of wind turbines for load reduction[J]. Journal of intelligent material systems and structures, 2015, 26(12): 1564-1572.
[6] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[7] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[8] STEWART G M.Load reduction of floating wind turbines using tuned mass dampers[D]. Amherst: University of Massachusetts Amherst, 2012.
[9] YANG J J, HE E M, HU Y Q.Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform[J]. Applied ocean research, 2019, 83: 21-29.
[10] 贺尓铭, 熊波, 杨佳佳. 基于TMD-HMD的海上浮式风力机主被动综合振动控制[J]. 机械工程学报, 2020, 56(3): 73-79.
HE E M, XIONG B, YANG J J.Study on active-passive integrated vibration control of offshore floating wind turbine based on TMD-HMD[J]. Journal of mechanical engineering, 2020, 56(3): 73-79.
[11] 金鑫, 王宁, 周雷. 基于MTMD的漂浮式风力机侧向振动控制[J]. 太阳能学报, 2021, 42(9): 344-348.
JIN X, WANG N, ZHOU L.Lateral vibration control of floating wind turbines based on MTMD[J]. Acta energiae solaris sinica, 2021, 42(9): 344-348.
[12] 黄致谦, 丁勤卫, 李春, 等. 基于多岛遗传算法的漂浮式风力机稳定性多重调谐质量阻尼器优化控制[J]. 中国机械工程, 2018, 29(11): 1349-1356.
HUANG Z Q, DING Q W, LI C, et al.Optimal control of MTMD in floating wind turbine stability based on MIGA[J]. China mechanical engineering, 2018, 29(11): 1349-1356.
[13] VILLOSLADA D, SANTOS M, TOMAS-RODRIGUEZ M.General methodology for the identification of reduced dynamic models of barge-type floating wind turbines[J]. Energies, 2021, 14(13): 3902.
[14] HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering structures, 2018, 177: 198-209.
[15] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113-1127.
DING Q W, LI C, YUAN W B, et al.Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effects of wind and wave[J]. Proceedings of the CSEE, 2019, 39(4): 1113-1127.
[16] 黄国燕, 朱敏. 基于状态空间的漂浮式风电机组控制策略研究[J]. 太阳能学报, 2021, 42(6): 337-341.
HUANG G Y, ZHU M.Control stratege research of floating wind turbines based on state-space[J]. Acta energiae solaris sinica, 2021, 42(6): 337-341.
[17] JONKMAN J M, BUHL M L.FAST user's guide - updated august 2005[J]. National Renewable Energy Lab, 2005, 1: 1-244.
[18] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[J]. National Renewable Energy Lab, 2007, 1: 1-208.
[19] ZUO H R, BI K M, HAO H.A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and sustainable energy reviews, 2020, 121: 109710.
基金
国家自然科学基金(51677121); 辽宁省中央引导地方科技发展资金计划(2021JH6/10500166); 揭榜挂帅科技攻关专项(2021020545-JH1/104)