生物质气化副产有机污染物脱除及防控技术现状

卢岩, 李学琴, 李艳玲, 刘鹏, 祖思雅, 雷廷宙

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 399-405.

PDF(1717 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1717 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 399-405. DOI: 10.19912/j.0254-0096.tynxb.2022-1047

生物质气化副产有机污染物脱除及防控技术现状

  • 卢岩1, 李学琴1,2, 李艳玲1, 刘鹏1, 祖思雅3, 雷廷宙1
作者信息 +

CURRENT STATUS OF REMOVAL AND CONTROL TECHNOLOGIES FOR ORGANIC POLLUTANTS FROM BIOMASS GASIFICATION BY-PRODUCTS

  • Lu Yan1, Li Xueqin1,2, Li Yanling1, Liu Peng1, Zu Siya3, Lei Tingzhou1
Author information +
文章历史 +

摘要

有机污染物作为生物质热化学转化过程中的主要副产物,严重影响了该技术的应用前景;其中,有机污染物主要包括焦油、硫化物、氮化物等。焦油常温下粘结附于设备和管壁,造成设备堵塞;硫化物、氮化物等气化副产有机污染物对人体健康和生态环境产生严重危害。因此,该文从生物质气化技术入手,结合国内外有机污染物脱除及防控技术,对生物质气化过程中产生的焦油、硫化物、氮化物的来源、危害及处理方法进行了详细分析,展望了有机污染物防控技术的发展方向,以期为生物质气化过程中有机污染物脱除及防控提供可借鉴的经验,进一步促进生物质资源的高值化利用。

Abstract

As the main by-products of biomass thermochemical conversion, organic pollutants seriously affect the application prospects of this technology. Organic pollutants mainly include tar, nitrogen oxides, sulfur oxides, etc. Tar sticks to equipment and pipe wall at normal temperature, causing equipment blockage. Sulfide, nitride and other by-products of gasification are harmful to human health and ecological environment. Therefore, this paper starts with biomass gasification technology, combining domestic and foreign organic pollutant removal and control technologies, analyzes the sources, hazards and treatment methods of tar, sulfide and nitrogen produced in the biomass gasification process in detail, and looks forward to the development direction of organic pollutant prevention and control technology, in order to provide referential experience for the removal and control of organic pollutants in the biomass gasification process, further promote the high value utilization of biomass resources.

关键词

生物质 / 气化 / 有机污染物 / 脱除及防控技术 / 发展现状

Key words

biomass / gasification / organic pollutants / removal and control technology / development status

引用本文

导出引用
卢岩, 李学琴, 李艳玲, 刘鹏, 祖思雅, 雷廷宙. 生物质气化副产有机污染物脱除及防控技术现状[J]. 太阳能学报. 2023, 44(11): 399-405 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1047
Lu Yan, Li Xueqin, Li Yanling, Liu Peng, Zu Siya, Lei Tingzhou. CURRENT STATUS OF REMOVAL AND CONTROL TECHNOLOGIES FOR ORGANIC POLLUTANTS FROM BIOMASS GASIFICATION BY-PRODUCTS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 399-405 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1047
中图分类号: TK6   

参考文献

[1] 电力规划设计总院. 中国能源发展报告-2020[M]. 北京: 人民日报出版社, 2021.
Power Planning and Design Institute. Annual report on China's energy development-2020[M]. Beijing: People's Daily Press, 2021.
[2] 陈曦, 韩志群, 孔繁华, 等. 生物质能源的开发与利用[J]. 化学进展, 2007, 19(增刊2): 1091-1097.
CHEN X, HAN Z Q, KONG F H, et al.Exploitation and utilization of bio-energy[J]. Progress in chemistry, 2007, 19(S2): 1091-1097.
[3] IBS生物质能源高峰论坛. 我国生物质能年产量34.94亿吨,“十四五”有望步入发展快车道[R]. 2021.
IBS Biomass Energy Summit Forum. The annual output of biomass energy in China is 3.494 billion tons, and the 14th Five Year Plan is expected to enter the fast track of development[R]. 2021.
[4] 中国产业发展促进会生物质能产业分会. 中国生物质发电产业发展报告2021[R]. 2021.
Biomass Energy Industry Branch of China Industrial Development Promotion Association. China biomass power generation industry development report 2021[R]. 2021.
[5] 张晓东. 生物质热解气化及热解焦油催化裂化机理研究[D]. 杭州: 浙江大学, 2003.
ZHANG X D.Study on pyrolysis gasification of biomass and catalytic cracking mechanism of pyrolysis tar[D]. Hangzhou: Zhejiang University, 2003.
[6] 杨小元, 周宇翔. 生物质气化焦油生成及裂解机理研究进展[J]. 环境监控与预警, 2011, 3(1): 44-47.
YANG X Y, ZHOU Y X.A literature review on the formation and pyrolysis mechanism of biomass gasification tar[J]. Environmental monitoring and forewarning, 2011, 3(1): 44-47.
[7] 高正伟, 武震, 陈王琦, 等. 生物质气化中焦油特性及其处理[J]. 广州化工, 2015, 43(23): 50-52, 84.
GAO Z W, WU Z, CHEN W Q, et al.The features and elimination of tar in biomass gasification processes[J]. Guangzhou chemical industry, 2015, 43(23): 50-52, 84.
[8] 汤颖, 曹辉. 生物质气化技术研究进展[J]. 生物加工过程, 2017, 15(1): 57-62.
TANG Y, CAO H.Progress of biomass gasification technology[J]. Chinese journal of bioprocess engineering, 2017, 15(1): 57-62.
[9] 武卫荣, 崔淑贞, 高文超. 生物质气化技术的研究进展[J]. 化工新型材料, 2012, 40(12): 22-24.
WU W R, CUI S Z, GAO W C.Research progress of biomass gasification technology[J]. New chemical materials, 2012, 40(12): 22-24.
[10] 姚炜. 上吸式生物质气化炉的设计,试验和模拟[D]. 合肥: 合肥工业大学, 2006.
YAO W.Design, experimentation and simulation of the upward ventilating biomass-gasification stove[D]. Hefei: Hefei University of Technology, 2006.
[11] 何玉远. 煤与生物质共热解共气化过程中硫、氮的迁移规律研究[D]. 郑州: 郑州大学, 2018.
HE Y Y.Research on the transformation of sulfur and nitrogen during co-pyrolysis and co-gasification between coal and biomass[D]. Zhengzhou: Zhengzhou University, 2018.
[12] BAKER E, BROWN M, ELLIOTT D, et al.Characterization and treatment of tars and biomass gasifiers[R]. Pacific Northwest Lab., Richland, WA, USA, 1988.
[13] 赖艳华, 吕明新, 马春元, 等. 两段气化对降低生物质气化过程焦油生成量的影响[J]. 燃烧科学与技术, 2002, 8(5): 478-481.
LAI Y H, LYU M X, MA C Y, et al.Research on the influence of two stage gasification on reducing the tar content of gas of biomass gasification[J]. Journal of combustion science and technology, 2002, 8(5): 478-481.
[14] BRANDT P, LARSEN E, HENRIKSEN U.High tar reduction in a two-stage gasifier[J]. Energy & fuels, 2000, 14(4): 816-819.
[15] FAN Y Y, TIPPAYAWONG N, WEI G Q, et al.Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification[J]. Applied energy, 2020, 260: 114315.
[16] 臧云浩, 刘运权, 王夺. 两级下吸式生物质气化炉气化性能的研究[J]. 可再生能源, 2014, 32(6): 836-842.
ZANG Y H, LIU Y Q, WANG D.Study on gasification performance of a two-stage downdraft gasifier[J]. Renewable energy resources, 2014, 32(6): 836-842.
[17] 王武林, 周平. 生物质气化炉内焦油裂解净化技术的研究[J]. 农机化研究, 2012, 34(11): 225-227, 232.
WANG W L, ZHOU P.Tar cracking purification technology in biomass gasifier[J]. Journal of agricultural mechanization research, 2012, 34(11): 225-227, 232.
[18] EVANS R J, MILNE T A.Molecular characterization of the pyrolysis of biomass[J]. Energy & fuels, 1987, 1(2): 123-137.
[19] PÜTÜN E. Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy, 2010, 35(7): 2761-2766.
[20] 董玉平, 董磊, 申树云, 等. 数值研究生物质焦油在旋风分离器中分离特性[J]. 太阳能学报, 2007, 28(7): 799-804.
DONG Y P, DONG L, SHEN S Y, et al.Numerical study of the biomass tar particle separation characteristics in a cyclone separator[J]. Acta energiae solaris sinica, 2007, 28(7): 799-804.
[21] DE JONG W, ÜNAL Ö, ANDRIES J, et al.Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning[J]. Biomass and bioenergy, 2003, 25(1): 59-83.
[22] 杨海平, 米铁, 陈汉平, 等. 生物质气化中焦油的转化方法[J]. 煤气与热力, 2004, 24(3): 122-126.
YANG H P, MI T, CHEN H P, et al.Tar conversion in biomass gasification[J]. Gas & heat, 2004, 24(3): 122-126.
[23] 韦杰. 生物质气化气中焦油的催化裂解研究[D]. 北京: 华北电力大学, 2007.
WEI J.Research on biomass tar catalytic cracking[D]. Beijing: North China Electric Power University, 2007.
[24] 贺鹏. 热解温度对生物质焦油裂解率影响的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
HE P.Experimental study on effect of cracking temperature on the cracking ratios of biomass tar[D]. Harbin: Harbin Institute of Technology, 2010.
[25] BRANDT P, HENRIKSEN U.Decomposition of tar in gas from updraft gasifier by thermal cracking[C]//1st World Conference on Biomass for Energy and Industry. Seville, Spain, 2000.
[26] 李双明, 于春令, 刘章科, 等. 生物质气化焦油催化裂解研究[J]. 中国水运(下半月), 2011, 11(4): 238-239, 241.
LI S M, YU C L, LIU Z K, et al.Study on catalytic cracking of tar from biomass gasification[J]. China water transport, 2011, 11(4): 238-239, 241.
[27] 尚双, 兰奎, 王艳, 等. 生物质焦油重整催化剂的研究进展[J]. 生物质化学工程, 2020, 54(6): 65-73.
SHANG S, LAN K, WANG Y, et al.Research progress on catalyst for tar reforming in biomass gasification[J]. Biomass chemical engineering, 2020, 54(6): 65-73.
[28] ARTETXE M, ALVAREZ J, NAHIL M A, et al.Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts[J]. Energy conversion and management, 2017, 136: 119-126.
[29] SUTTON D, KELLEHER B, DOYLE A, et al.Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products[J]. Bioresource technology, 2001, 80(2): 111-116.
[30] SRINAKRUANG J, SATO K, VITIDSANT T, et al.A highly efficient catalyst for tar gasification with steam[J]. Catalysis communications, 2005, 6(6): 437-440.
[31] KUHN J N, ZHAO Z K, FELIX L G, et al.Olivine catalysts for methane- and tar-steam reforming[J]. Applied catalysis B: environmental, 2008, 81(1/2): 14-26.
[32] ŚWIERCZYŃSKI D, LIBS S, COURSON C, et al. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J]. Applied catalysis B: environmental, 2007, 74(3/4): 211-222.
[33] KUHN J N, ZHAO Z K, SENEFELD-NABER A, et al.Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity, and stability[J]. Applied catalysis A: general, 2008, 341(1/2): 43-49.
[34] 刘粤, 车庆丰, 易为, 等. 微介孔Ni/ZSM-5分子筛对甲苯催化重整的影响[J]. 可再生能源, 2021, 39(4): 427-433.
LIU Y, CHE Q F, YI W, et al.Effect of micro-mesoporous Ni/ZSM-5 zeolites on catalytic reforming of toluene[J]. Renewable energy resources, 2021, 39(4): 427-433.
[35] 杨延涛, 李顺清, 李俊娜. 秸秆气化焦油在负载复合金属的HZSM-5分子筛上的催化裂解反应的研究[J]. 河南科学, 2012, 30(9): 1256-1259.
YANG Y T, LI S Q, LI J N.Catalyst cracking reaction of straw gasification tar on the molecular sieve HZSM-5 loading the composite metal[J]. Henan science, 2012, 30(9): 1256-1259.
[36] SHEN Y F, ZHAO P T, SHAO Q F, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied catalysis B: environmental, 2014, 152/153: 140-151.
[37] 邸英臣. 生物炭负载多元纳米金属材料对焦油的催化裂解性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
DI Y C.Study on catalytic pyrolysis performance of biomass tar through as-prepared multi-mano metal assisted-char[D]. Harbin: Harbin Institute of Technology, 2019.
[38] 杨修春, 韦亚南, 李伟捷. 焦油裂解用催化剂的研究进展[J]. 化工进展, 2007, 26(3): 326-330.
YANG X C, WEI Y N, LI W J.Research progress of catalysts for tar cracking[J]. Chemical industry and engineering progress, 2007, 26(3): 326-330.
[39] ARAVIND P V, DE JONG W.Evaluation of high temperature gas cleaning options for biomass gasification product gas for solid oxide fuel cells[J]. Progress in energy and combustion science, 2012, 38(6): 737-764.
[40] 谢巍, 常丽萍, 余江龙, 等. 煤气净化中H2S干法脱除的研究进展[J]. 化工学报, 2006, 57(9): 2012-2020.
XIE W, CHANG L P, YU J L, et al.Research progress of removal of H2S from coal gas by dry method[J]. Journal of chemical industry and engineering (China), 2006, 57(9): 2012-2020.
[41] 王小波, 刘安琪, 赵增立, 等. 强碱性熔融盐脱除生物质气化合成气中H2S的效果[J]. 农业工程学报, 2018, 34(22): 206-211.
WANG X B, LIU A Q, ZHAO Z L, et al.H2S removal from biomass gasification syngas using high alkali molten salts[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 206-211.
[42] 卓越, 丹增德吉, 董甜甜, 等. 垃圾气化合成气中H2S的脱除研究[C]//2019中国环境科学学会科学技术年会论文集(第二卷). 西安, 2019: 895-902.
ZHUO Y, DANZENG D J, DONG T T, et al.Research on the removal of H2S from waste gasification synthesis gas[C]//Proceedings of the 2019 Chinese Society of Environmental Sciences Annual Conference on Science and Technology(Volume 2). Xi'an, China, 2019: 895-902.
[43] WANG G Y, XU S P, WANG C, et al.Desulfurization and tar reforming of biogenous syngas over Ni/olivine in a decoupled dual loop gasifier[J]. International journal of hydrogen energy, 2017, 42(23): 15471-15478.
[44] HACHIMI A, VILCOCQ L, COURSON C, et al.Study of olivine supported copper sorbents performances in the desulfurization process in link with biomass gasification[J]. Fuel processing technology, 2014, 118: 254-263.
[45] 聂虎, 余春江, 柏继松, 等. 生物质燃烧中硫氧化物和氮氧化物生成机理研究[J]. 热力发电, 2010, 39(9): 21-26, 34.
NIE H, YU C J, BAI J S, et al.Study on formation mechanisms of sulphide and nitrogen oxides in combustion of biomass[J]. Thermal power generation, 2010, 39(9): 21-26, 34.
[46] 孟凡彬. 生物质合成气的组分调控技术及深度净化[D]. 沈阳: 沈阳农业大学, 2012.
MENG F B.Biomass syngas conditioning technology and intensive puirfication[D]. Shenyang: Shenyang Agricultural University, 2012.
[47] MOJTAHEDI W, ABBASIAN J.Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure[J]. Fuel, 1995, 74(11): 1698-1703.
[48] MOJTAHEDI W, YLITALO M, MAUNULA T, et al.Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier[J]. Fuel processing technology, 1995, 45(3): 221-236.
[49] TSUBOUCHI N, HASHIMOTO H, OHTSUKA Y.High catalytic performance of fine particles of metallic iron formed from limonite in the decomposition of a low concentration of ammonia[J]. Catalysis letters, 2005, 105(3/4): 203-208.
[50] JUUTILAINEN S J, SIMELL P A, KRAUSE A O I. Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas[J]. Applied catalysis B: environmental, 2006, 62(1/2): 86-92.
[51] 张瑞芹, 丁小会. 生物质燃气中氨的催化分解[J]. 郑州大学学报(理学版), 2004, 36(3): 67-72.
ZHANG R Q, DING X H.Catalytic decomposition of ammonia in producer gas[J]. Journal of Zhengzhou University (natural science edition), 2004, 36(3): 67-72.
[52] 丁小会. 生物质燃气中氨的催化分解研究[D]. 郑州: 郑州大学, 2004.
DING X H.Study on catalytic decomposition of ammonia in biomass gas[D]. Zhengzhou: Zhengzhou University, 2004.

基金

国家自然科学基金(51906021); 2020年民用飞机专项科研项目-航空替代燃料可持续评价(MJ-2020-D-09); 国家重点研发计划(2018YFC1901203)

PDF(1717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/