基于IAOA-VMD-LSTM的超短期风电功率预测

肖烈禧, 张玉, 周辉, 赵冠皓

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 239-246.

PDF(1921 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1921 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 239-246. DOI: 10.19912/j.0254-0096.tynxb.2022-1054

基于IAOA-VMD-LSTM的超短期风电功率预测

  • 肖烈禧1, 张玉1, 2, 周辉1, 赵冠皓1
作者信息 +

ULTRA SHORT TREM WIND POWER PREDICTION BASED ON IAOA-VMD-LSTM

  • Xiao Liexi1, Zhang Yu1,2, Zhou Hui1, Zhao Guanhao1
Author information +
文章历史 +

摘要

为了对风电功率进行精确预测,提出一种基于改进算术优化算法(IAOA)、变分模态分解(VMD)和长短期记忆网络(LSTM)的超短期风电功率预测模型(IAOA-VMD-LSTM)。利用IAOA对VMD的关键分解参数kα进行优化,得到的各固有模态函数(IMF)具有周期性,能够提升LSTM的预测精度,同时利用IAOA对LSTM网络参数进行优化。通过对风电功率数据进行预测分析,结果表明IAOA-VMD-LSTM预测模型相比于其他模型的预测精度更高。

Abstract

In order to accurately predict wind power, an ultra-short-term wind power prediction model was proposed based on improved arithmetic optimization algorithm (IAOA), variational modal decomposition (VMD) and long short-term memory network (LSTM). The IAOA algorithm was used to optimize the key decomposition parameters k and α of VMD, and the inherent modal functions (IMF) obtained were periodic, which could improve the prediction accuracy of LSTM. Meanwhile, the IAOA algorithm was used to optimize the LSTM network parameters. Through the prediction analysis of wind power data, the results show that the IAOA-VMD-LSTM prediction model has higher prediction accuracy than other models.

关键词

风电功率预测 / 变分模态分解 / 长短期记忆网络 / 算术优化算法

Key words

wind power forecast / variational modal decomposition / long short-term memory / arithmetic optimization algorithm

引用本文

导出引用
肖烈禧, 张玉, 周辉, 赵冠皓. 基于IAOA-VMD-LSTM的超短期风电功率预测[J]. 太阳能学报. 2023, 44(11): 239-246 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1054
Xiao Liexi, Zhang Yu, Zhou Hui, Zhao Guanhao. ULTRA SHORT TREM WIND POWER PREDICTION BASED ON IAOA-VMD-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 239-246 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1054
中图分类号: TM614   

参考文献

[1] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications of wind power forecasting[J]. High voltage technology, 2021, 47(4): 1129-1143.
[2] 唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58: 1-24.
TANG X Z, GU N W, HUANG X Q, et al.Research progress of short-term wind power forecasting technology[J]. Journal of mechanical engineering, 2022, 58: 1-24.
[3] 薛禹胜, 郁琛, 赵俊华, 等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39(6): 141-150.
XU Y S, YU C,ZHAO J H,et al.A review on short-term and ultra-short-term wind power pre-diction[J]. Automation of electric power systems, 2015, 39(6): 141-150.
[4] 刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9): 3290-3296.
LIU D G, WANG W Q, ZHANG H E,et al.Applica-tion of markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power system technology, 2020, 44(9): 3290-3296.
[5] 陈中慧, 王海云, 王维庆, 等. 基于数据挖掘与小波去噪的短期风电功率预测[J]. 计算机仿真, 2021, 38(9): 90-94.
CHEN Z H, WANG H Y, WANG W Q, et al.Short-term wind power prediction base on data mining and wavelet denoising[J]. Computer simulation, 2021, 38(9): 90-94.
[6] 路明, 叶林, 裴铭, 等. 风电集群有功功率模型预测协调控制策略[J]. 中国电机工程学报, 2021, 41(17): 5887-5899.
LU M, YE L, FEI M, et al.Active power model prediction and coordinated control strategy for wind power cluster[J]. Proceedings of the CSEE, 2021, 41(17): 5887-5899.
[7] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059.
RAN J, ZHANG Z G, LIANG Z F, et al.Review of wind speed and wind power prediction methods[J]. Journal of applied statistics and management, 2020, 39(6): 1045-1059.
[8] 杨茂, 张罗宾. 基于数据驱动的超短期风电功率预测综述[J]. 电力系统保护与控制, 2019, 47(13): 171-186.
YANG M, ZHANG L B.Review on ultra-short term wind power forecasting based on data-driven approach[J]. Power system protection and control, 2019, 47(13): 171-186.
[9] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532-4539.
ZHU L J, XUN Z H, WANG Y X, et al.Short-term power load forecasting based on CNN-BILSTM[J]. Power system technology, 2021, 45(11): 4532-4539.
[10] 李天中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI T Z, LI Y Y.Ultra-short-term wind power Prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[11] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power prediction based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[12] ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J]. Computer methods in applied mechanics and engineering, 2021, 376: 113609.
[13] 兰周新, 何庆. 多策略融合算术优化算法及其工程优化[J]. 计算机应用研究, 2022, 39(3): 758-763.
LAN Z X, HE Q.Multi-strategy fusion arithmetic optimization algorithm and its application of project optimization[J]. Application research of computers, 2022, 39(3): 758-763.
[14] 郑婷婷, 刘升, 叶旭. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究, 2022, 39(5): 1410-1414.
ZHENG T T, LIU S, YE X.Arithmetic optimization algorithm base on adaptive t-distribution and im-proved dynamic boundary strategy[J]. Application research of computers, 2022, 39(5): 1410-1414.
[15] 李楠, 薛建凯, 舒慧生. 基于自适应t分布变异麻雀搜索算法的无人机航迹规划[J]. 东华大学学报(自然科学版), 2022, 48(3): 69-74.
LI N, XUE J K, SHU H S.A sparrow search algorithm with adaptive t distribution mutation-based path planning of unmanned aerial vehicles[J]. Journal of Donghua University (natural science), 2022, 48(3): 69-74.
[16] DRAGOMIRETSKIY K, ZOSSO D.Variational Mode Decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-541.
[17] YUAN X H, CHEN C, JIANG M, et al.Prediction inter-val of wind power using parameter optimized Beta distribution based LSTM model[J]. Applied soft computing, 2019, 82: 105550.
[18] 李春兰, 王静, 石砦, 等. 基于VMD-LSTM的触电电流提取方法研究[J]. 湖南大学学报(自然科学版), 2022, 49(2): 149-159.
LI C L, WANG J, SHI Z, et al.Research on extraction method of electric shock current based on VMD-LSTM[J]. Journal of Hunan University (natural sciences), 2022, 49(2): 149-159.
[19] ZHANG Y, XIAO L X, ZHOU H, et al.Control strategy of wind power smooth grid connection based on adaptive[J]. Journal of renewable and sustainable energy, 2022, 14(2): 023306.

基金

广西建筑新能源与节能重点实验室开放研究基金项目(桂科能17-J-21-4)

PDF(1921 KB)

Accesses

Citation

Detail

段落导航
相关文章

/