[1] 占颖, 吴琛, 谢小荣, 等. 风电并网系统次同步振荡的频域模式分析[J]. 电力系统自动化, 2020, 44(18): 90-97. ZHAN Y, WU C, XIE X R, et al.Frequency domain modal analysis of subsynchronous oscillation in grid-connected wind power system[J]. Automation of electric power system, 2020, 44(18): 90-97. [2] 王勃, 刘纯, 冯双磊, 等. 基于集群划分的短期风电功率预测方法[J]. 高电压技术, 2018, 44(4): 1254-1260. WANG B, LIU C, FENG S L, et al.Prediction method for short-term wind power based on wind farm clusters[J]. High voltage engineering, 2018, 44(4): 1254-1260. [3] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1):17-27. WANG W S, WANG Z, DONG C, et al.Status and error analysis of short-term forecasting technology of wind power in China[J]. Automation of electric power system, 2021, 45(1): 17-27. [4] 王勃, 刘纯, 张俊, 等. 基于Monte-Carlo方法的风电功率预测不确定性估计[J]. 高电压技术, 2015, 41(10): 3385-3391. WANG B, LIU C, ZHANG J, et al.Uncertainty estimation of wind power prediction based on Monte-Carlo method[J]. High voltage engineering, 2015, 41(10): 3385-3391. [5] 王铮, 刘纯, 冯双磊, 等. 基于非参数回归的风电场理论功率计算方法[J]. 电网技术, 2015, 39(8): 2148-2153. WANG Z, LIU C, FENG S L, et al.The wind farm theoretical power calculation method research based on non-parameter regression[J]. Power system technology , 2015, 39(8): 2148-2153. [6] 王勃, 冯双磊, 刘纯. 基于天气分型的风电功率预测方法[J]. 电网技术, 2014, 38(1): 93-98. WANG B, FENG S L, LIU C.Study on weather typing based wind power prediction[J]. Power system technology , 2014, 38(1): 93-98. [7] 王铮, 冯双磊, 申宏, 等. 基于加权系数动态修正的短期风电功率组合预测方法[J]. 电网技术, 2017, 41(2): 500-507. WANG Z, FENG S L,SHEN H,et al.Short-term wind power combination forecasting method based on dynamic coefficient updating[J]. Power system technology, 2017, 41(2): 500-507. [8] 王钊, 王伟胜, 刘纯, 等. 风电功率的特征近邻搜索概率预测方法[J]. 电网技术, 2022, 46(3): 880-887. WANG Z, WANG W S, LIU C, et al.Probabilistic forecast of wind power based on nearest neighbor feature searching[J]. Power system technology, 2022,46(3): 880-887. [9] 李卓, 叶林, 戴斌华, 等. 基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J]. 高电压技术, 2022, 48(6): 2117-2127. LI Z, YE L, DAI B H, et al.Ultra-short-term wind power prediction method based on IDSCNN-AM-LSTM combined neural network[J]. High voltage engineering, 2022, 48(6): 2117-2127. [10] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296. XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J].Acta energiae solaris sinica, 2021, 42(7): 290-296. [11] 赵冬梅, 杜刚, 刘鑫, 等. 基于时序分解及机器学习的风电功率组合预测模型[J]. 现代电力, 2022, 39(1): 9-18. ZHAO D M, DU G, LIU X, et al.Wind power combination prediction model based on time series decomposition and machine learning[J]. Modern electric power, 2022, 39(1): 9-18. [12] 梁志峰, 王铮, 冯双磊, 等. 基于波动规律挖掘的风电功率超短期预测方法[J]. 电网技术, 2020, 44(11): 4096-4104. LIANG Z F, WANG Z, FENG S L, et al.Ultra-short-term forecasting method of wind power based on fluctuation law mining[J]. Power system technology, 2020, 44(11): 4096-4104. [13] SHI J, DING Z H, LEE W J, et al.Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features[J]. IEEE transactions on smart grid, 2014, 5(1): 521-526. [14] LI D, YAN W, LI W Y, et al.A two-tier wind power time series model considering day-to-day weather transition and intraday wind power fluctuations[J]. IEEE transactions on power systems, 2016, 31(6): 4330-4339. [15] WANG S X, ZHANG N, WU L, et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable energy, 2016, 94: 629-636. [16] 师洪涛, 杨静玲, 丁茂生, 等. 基于小波-BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35(16): 44-48. SHI H T, YANG J L, DING M S, et al.A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of electric power systems, 2011, 35(16): 44-48. [17] SASSER C, YU M, DELGADO R.Improvement of wind power prediction from meteorological characterization with machine learning models[J]. Renewable energy, 2022, 183: 491-501. [18] 师洪涛, 李梓鑫, 丁茂生, 等. 基于WP风向趋变特性与决策树的风电功率预测[J]. 现代电子技术, 2021, 44(23): 175-179. SHI H T, LI Z X, DING M S, et al.Wind power prediction based on WP-based wind direction trend changing characteristics and decision tree[J]. Modern electronic technique, 2021, 44(23): 175-179. [19] 高天霁. 基于多因素数据特征提取与组合的风电功率短期预测方法研究[D]. 银川: 北方民族大学, 2021. GAO T J.Research on short-term wind power forecasting method based on feature extraction and combination of multi-factor data[D]. Yinchuan: Northern University for Nationalities, 2021. [20] FU C, LI G Q, LIN K P, et al.Short-term wind power prediction based on improved chicken algorithm optimization support vector machine[J]. Sustainability, 2019, 11(2): 512. [21] LIU Y, SHI J, YANG Y, et al.Short-term wind-power prediction based on wavelet transform-support vector machine and statistic-characteristics analysis[J]. IEEE transactions on industry applications, 2012, 48(4): 1136-1141. [22] ZHENG L, ZHOU B, OR S W, et al.Spatio-temporal wind speed prediction of multiple wind farms using capsule network[J]. Renewable energy, 2021, 175: 718-730. [23] 张颖超, 王雅晨, 邓华, 等. 基于IAFSA-BPNN的短期风电功率预测[J]. 电力系统保护与控制, 2017, 45(7): 58-63. ZHANG Y C, WANG Y C, DENG H, et al.IAFSA-BPNN for wind power probabilistic forecasting[J]. Power system protection and control, 2017, 45(7): 58-63. [24] 顾东红. 基于空间相关性的风电功率预测研究[D]. 沈阳: 沈阳工业大学, 2020. GU D H.Research on wind power prediction based on spatial correlation[D]. Shenyang: Shenyang University of Technology, 2020. [25] 闫佳. 基于多维聚类及马尔可夫链组合模型的风电功率短期预测方法研究[D]. 银川: 北方民族大学, 2021. YAN J.Research on short-term forecasting method of wind power based on multi-dimensional clustering and markov chain combination model[D]. Yinchuan: Northern University for Nationalities, 2021. [26] CHEN S, YE L, ZHANG G W, et al.Short-term wind power prediction based on combined grey-Markov model[C]//2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 2011. [27] 宋家康, 彭勇刚, 蔡宏达, 等. 考虑多位置NWP和非典型特征的短期风电功率预测研究[J]. 电网技术, 2018, 42(10): 3234-3240. SONG J K, PENG Y G, CAI H D, et al.Research of short-term wind power forecasting considering multi-location NWP and uncanonical feature[J]. Power system technology, 2018, 42(10): 3234-3240. [28] 杨辉明, 雷勇. 基于改进马尔科夫链的风电日前不确定性建模方法[J]. 南方电网技术, 2021, 15(7): 54-60. YANG H M, LEI Y.Day-ahead uncertainty simulation method of wind power based on improved Markov chain[J]. Southern power system technology, 2021, 15(7): 54-60. [29] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143. SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J].High voltage engineering, 2021, 47(4): 1129-1143. [30] 刘晓宇. 基于隐马尔可夫链的风电功率短期预测研究[D]. 呼和浩特: 内蒙古大学, 2018. LIU X Y.Wind power prediction based on hidden Markov chain[D]. Huhhot: Inner Mongolia University, 2018. [31] 张俊峰, 薛青, 王常琳, 等. 基于粗糙集的指挥决策仿真可信性评估方法[J]. 计算机仿真, 2020, 37(7): 14-19. ZHANG J F, XUE Q, WANG C L, et al.Credibility evaluation method of command decision-making simulation based on rough sets[J]. Computer simulation, 2020, 37(7): 14-19. [32] 闫晓龙. 基于多尺度熵的加权HMM网络安全态势预测方法研究[D]. 长沙: 湖南大学, 2016. YAN X L.Research on weighted hmm network security situation prediction method based on multi-scale entropy[D]. Changsha: Hunan University, 2016. [33] 樊昌信. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 11-12. FAN C X, Principles of communication[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 11-12. [34] 莫文雄, 白剑锋, 朱文, 等. 基于风速风向联合概率的输电线路漂浮物故障风险评估[J]. 高电压技术, 2018, 44(4): 1085-1092. MO W X, BAI J F, ZHU W, et al.Risk assessment of transmission lines trip-out caused by floaters based on joint probability density function of extreme wind speed and direction[J]. High voltage engineering, 2018, 44(4): 1085-1092. [35] 陈隽, 赵旭东. 总体样本风速风向联合概率分析方法[J]. 防灾减灾工程学报, 2009, 29(1): 63-70. CHEN J, ZHAO X D.Analytical method of joint probability density function of wind speed and direction from parent population[J]. Journal of disaster prevention and mitigation engineering, 2009, 29(1): 63-70. [36] 熊菊霞, 吴尽昭, 王秋红. 邻域互信息熵的混合型数据决策代价属性约简[J]. 小型微型计算机系统, 2021, 42(8): 1584-1590. XIONG J X, WU J Z, WANG Q H.Decision cost attribute reduction of hybrid data based on neighborhood mutual information entropy[J]. Journal of Chinese computer systems, 2021, 42(8): 1584-1590. |