为延长固体氧化物燃料电池(SOFC)的寿命、提高系统性能,以5 kW平板式SOFC系统为研究对象,在满足功率需求和温度约束的条件下,探究其通过寻优最佳的操作参数组合以实现最高的系统效率。首先采用模块化建模方法,基于工作机理建立SOFC独立发电系统的模型。其次,基于所建立的系统模型,通过定义4个操作参数,并结合系统的热电约束,形成SOFC系统效率优化问题。针对该优化问题,提出一种结合元启发式优化算法的两级优化方案,即将操作参数按照对SOFC系统的影响分为两级,对第一级操作参数进行离散取值,对第二级操作参数采用麻雀搜索算法进行优化。结果表明,所提优化方案可获得全局最优操作点,使SOFC系统满足功率需求和温度约束条件且系统效率达到最优。
Abstract
In order to prolong the life of solid oxide fuel cell (SOFC) and improve the system performance, this paper takes the 5 kW planar SOFC system as the research object, under the condition of meeting the power requirements and temperature constraints, explores the optimal combination of operating parameters to achieve the highest system efficiency. In this paper, the modular modeling method is used to build the simulation model of SOFC independent power generation system based on the working mechanism. Secondly, based on the established system model, the SOFC system efficiency optimization problem is formed by defining four operating parameters and combining the thermoelectric constraints of the system. To solve this problem, a two-level optimization scheme combined with meta-heuristic optimization algorithm is proposed for the first time, that is, the operation parameters are divided into two levels according to their impact on SOFC system, the first level of operation parameters are discretized, and the second level of operation parameters are optimized by sparrow search algorithm. The results show that the global optimal operating point can be obtained by the proposed optimization scheme, and the SOFC system can meet the power requirements and temperature constraints and achieve the optimal system efficiency.
关键词
约束优化 /
温度约束 /
麻雀搜索算法 /
固体氧化物燃料电池系统 /
系统效率
Key words
constrained optimization /
temperature constraint /
sparrow search algorithm /
SOFC system /
system efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 仙存妮. 固体氧化物燃料电池技术发展概述及应用分析[J]. 电器工业, 2019(3): 70-74.
XIAN C N.Overview and application analysis of solid oxide fuel cell technology development[J]. China electrical equipment industry, 2019(3): 70-74.
[2] POLVERINO P, PIANESE C, SORRENTINO M, et al.Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis[J]. Journal of power sources, 2015, 280: 320-338.
[3] XUE T, WU X L, ZHAO D Q, et al.Fault-tolerant control for steam fluctuation in SOFC system with reforming units[J]. International journal of hydrogen energy, 2019, 44(41): 23360-23376.
[4] ZHANG L, JIANG J H, CHENG H, et al.Control strategy for power management, efficiency-optimization and operating-safety of a 5-kW solid oxide fuel cell system[J]. Electrochimica acta, 2015, 177: 237-249.
[5] 蒋建华. 平板式固体氧化物燃料电池系统的动态建模与控制[D]. 武汉: 华中科技大学, 2013.
JIANG J H.Dynamic modeling and control of planar solid oxide fuel cell systems[D]. Wuhan: Huazhong University of Science and Technology, 2013.
[6] 张琳. 面向高效率负载跟踪的SOFC系统优化与控制研究[D]. 湖北: 华中科技大学, 2015.
ZHANG L.Optimization and control strategy of SOFC from the perspective of high efficiency[D]. Hubei: Huazhong University of Science and Technology, 2015.
[7] 高丹慧. 固体氧化物燃料电池系统优化控制[D]. 成都: 电子科技大学, 2018.
GAO D H.Optimal control of a solid oxide fuel cell system[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[8] CHENG H, JING S W, XU Y W, et al.Control-oriented modeling analysis and optimization of planar solid oxide fuel cell system[J]. International journal of hydrogen energy, 2016, 41(47): 22285-22304.
[9] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[10] CAO H L, LI X, DENG Z H, et al.Dynamic modeling and experimental validation for the electrical coupling in a 5-cell solid oxide fuel cell stack in the perspective of thermal coupling[J]. International journal of hydrogen energy, 2011, 36(7): 4409-4418.
[11] CAO H L, LI X, DENG Z H, et al.Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency[J]. International journal of hydrogen energy, 2013, 38(28): 12404-12417.
[12] CHENG H, LI X, JIANG J H, et al.A nonlinear sliding mode observer for the estimation of temperature distribution in a planar solid oxide fuel cell[J]. International journal of hydrogen energy, 2015, 40(1): 593-606.
[13] JIANG J H, LI X, LI J.Modeling and model-based analysis of a solid oxide fuel cell thermal-electrical management system with an air bypass valve[J]. Electrochimica acta, 2015, 177: 250-263.
[14] 曹红亮. 固体氧化物燃料电池发电系统动态建模与控制[D]. 武汉: 华中科技大学, 2012.
CAO H L.Dynamic modeling and control of solid oxide fuel cell systems[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[15] 张月栋, 莫愿斌. 改进的麻雀搜索算法及其求解旅行商问题[J]. 计算机系统应用, 2022, 31(2): 200-206.
ZHANG Y D, MO Y B.Improved sparrow search algorithm and its application in TSP[J]. Computer systems and applications, 2022, 31(2): 200-206.
[16] YAVUZ G.Diversified position update equation-based SSA with refreshing-gap strategy for global optimization[J]. Journal of computational science, 2022, 60: 101597.
[17] SU X H, HE X L, ZHANG G, et al.Research on SVR water quality prediction model based on improved sparrow search algorithm[J]. Computational intelligence and neuroscience, 2022, 2022: 7327072.
基金
上海市科委“浦江人才”项目(18PJ1404200); 上海市水产动物良种创制与绿色养殖协同创新中心项目(2021科技02-12)