基于管网阻力辨识的太阳能-空气源热泵区域供热系统运行调控研究

王晶, 侯宏娟, 张辉, 孙莉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 9-15.

PDF(1760 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1760 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 9-15. DOI: 10.19912/j.0254-0096.tynxb.2022-1064

基于管网阻力辨识的太阳能-空气源热泵区域供热系统运行调控研究

  • 王晶, 侯宏娟, 张辉, 孙莉
作者信息 +

RESEARCH ON OPERATION REGULATION OF SOLAR-AIR SOURCE HEAT PUNP DISTRICT HEATING SYSTEM BASED ON PIPE NETWORK RESISTANCE IDENTIFICATION

  • Wang Jing, Hou Hongjuan, Zhang Hui, Sun Li
Author information +
文章历史 +

摘要

建立太阳能-空气源热泵区域供热系统模型,并利用遗传算法进行阻力辨识,进而对管网变流量运行调控进行研究,以降低供热系统热耗与水泵电耗。以包含4个热力站的某区域供暖系统为例,开展管网变工况运行调控研究。结果表明,当系统内某热力站负荷突变,如由168.62 kW减小到5.85 kW时,基于阻力辨识结果,通过管网变流量运行调控能够充分挖掘系统的节能潜力:相比常规调节方法该系统泵功率可由13.94 kW下降到10.46 kW,节能率达11.83%。

Abstract

In this paper a set of solar-air source heat pump district heating system model is built and genetic algorithm is introduced in the resistance identifications of pipe network. Based on it, the variable flow regulation of the heating pipe network is studied to reduce the heat consumption of the system and the power consumption of the pump. Further a heating pipe network operation and regulation under the condition of load changes is carried out as an example of a district heating system including 4 thermal stations. The results show that when the load of the a thermal station in the heating area is abruptly changed, such as reducing from 168.62 kW to 5.85 kW, the energy saving potential of the system can be fully tapped under the premise of ensuring the hydraulic balance of the pipe network based on the resistance identification results: Compared with the conventional adjustment method, the electric power of the pump decreases from 13.94 kW to 10.46 kW, and the corresponding heating energy saving rate can reach 11.83%.

关键词

太阳能 / 空气源热泵 / 区域供热 / 遗传算法 / 阻力辨识 / 运行调控

Key words

solar energy / air source heat pumps / district heating / genetic algorithms / resistance identification / operation adjustment

引用本文

导出引用
王晶, 侯宏娟, 张辉, 孙莉. 基于管网阻力辨识的太阳能-空气源热泵区域供热系统运行调控研究[J]. 太阳能学报. 2023, 44(11): 9-15 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1064
Wang Jing, Hou Hongjuan, Zhang Hui, Sun Li. RESEARCH ON OPERATION REGULATION OF SOLAR-AIR SOURCE HEAT PUNP DISTRICT HEATING SYSTEM BASED ON PIPE NETWORK RESISTANCE IDENTIFICATION[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 9-15 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1064
中图分类号: TK519   

参考文献

[1] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Y, HU S.Paths to carbon neutrality in China's building sector[J]. Heating ventilating & air conditioning, 2021, 51(5): 1-13.
[2] 孙毅, 李泽坤, 鲍荟谕, 等. 清洁供热模式下多能异构负荷调控框架及关键技术剖析[J]. 中国电机工程学报, 2021, 41(20): 6827-6842.
SUN Y, LI Z K, BAO H Y, et al.Multi-energy heterogeneous load regulation framework and key technology analysis under clean heating mode[J]. Proceedings of the CSEE, 2021, 41(20): 6827-6842.
[3] BABACAN O, TORRE W, KLEISSL J.Siting and sizing of distributed energy storage to mitigate voltage impact by solar PV in distribution systems[J]. Solar energy, 2017, 146: 199-208.
[4] 裴玮, 邓卫, 沈子奇, 等. 可再生能源与热电联供混合微网能量协调优化[J]. 电力系统自动化, 2014, 38(16): 9-15.
PEI W, DENG W, SHEN Z Q, et al.Energy coordination and optimization of hybrid microgrid based on renewable energy and CHP supply[J]. Automation of electric power systems, 2014, 38(16): 9-15.
[5] 赵军, 金玉, 李浩, 等. 基于虚拟储能的建筑可再生能源系统设计与优化[J]. 太阳能学报, 2021, 42(5): 91-97.
ZHAO J, JIN Y, LI H, et al.Design and optimization of building integrated renewable energy system based on virtual energy storage[J]. Acta energiae solaris sinica, 2021, 42(5): 91-97.
[6] 靳小龙, 穆云飞, 贾宏杰, 等. 融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J]. 中国电机工程学报, 2017, 37(2): 581-591.
JIN X L, MU Y F, JIA H J, et al.Optimal scheduling method for a combined cooling, heating and power building microgrid considering virtual storage system at demand side[J]. Proceedings of the CSEE, 2017, 37(2): 581-591.
[7] 徐宝萍, 张超. 供暖系统末端控制技术发展及研究综述[J]. 暖通空调, 2019, 49(3): 1-8.
XU B P, ZHANG C.Development of terminal control technology for heating systems: a literature review[J]. Heating ventilating & air conditioning, 2019, 49(3): 1-8.
[8] STEVANOVIC V D, PRICA S, MASLOVARIC B, et al.Efficient numerical method for district heating system hydraulics[J]. Energy conversion and management, 2007, 48(5): 1536-1543.
[9] 秦绪忠, 江亿. 多热源并网供热的水力优化调度研究[J]. 暖通空调, 2001, 31(1): 11-16.
QIN X Z, JIANG Y.Hydraulic optimization of multi heat source heating networks[J]. Heating ventilating & air conditioning, 2001, 31(1): 11-16.
[10] ZHANG L P, GUDMUNDSSON O, THORSEN J E, et al.Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level[J]. Energy, 2016, 107: 431-442.
[11] 赵琼. 智慧城市供热系统建模仿真与运行优化控制[D]. 杭州: 浙江大学, 2017.
ZHAO Q.Modeling simulation and operational optimization control of smart city heating system[D]. Hangzhou: Zhejiang University, 2017.
[12] SOLOHA R, PAKERE I, BLUMBERGA D.Solar energy use in district heating systems. A case study in Latvia[J]. Energy, 2017, 137: 586-594.
[13] 白保华, 丁泽宇, 王康, 等. 含有光伏发电的分布式能量系统设备容量优化[J]. 热力发电, 2020, 49(7): 28-34.
BAI B H, DING Z Y, WANG K, et al.Capacity optimization for equipment of distributed energy system with photovoltaic power generation subsystem[J]. Thermal power generation, 2020, 49(7): 28-34.
[14] DIESTEL R, SCHRIJVER A, SEYMOUR P.Graph theory[J]. Oberwolfach reports, 2010, 7: 521-580.
[15] ZHENG J F, ZHOU Z G, ZHAO J N, et al.Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration[J]. Applied energy, 2018, 230: 1126-1139.
[16] WANG J D, ZHOU Z G, ZHAO J N.A method for the steady-state thermal simulation of district heating systems and model parameters calibration[J]. Energy conversion and management, 2016, 120: 294-305.
[17] XU B P, ZHOU S X, HU W J.An intermittent heating strategy by predicting warm-up time for office buildings in Beijing[J]. Energy and buildings, 2017, 155: 35-42.
[18] 周国兵, 张于峰, 田琦, 等. 变流量间接供热系统的调节[J]. 暖通空调, 2004, 34(7): 43-47.
ZHOU G B, ZHANG Y F, TIAN Q, et al.Adjustment of indirect variable-flow heating systems[J]. Heating ventilating & air conditioning, 2004, 34(7): 43-47.
[19] 付祥钊, 肖益民. 流体输配管网[M]. 4版. 北京: 中国建筑工业出版社, 2018.
FU X Z, XIAO Y M.Fluid network for transportation and distribution[M]. 4th ed. Beijing: China Architecture & Building Press, 2018.
[20] 贺平, 孙刚, 王飞, 等. 供热工程[M]. 4版. 北京: 中国建筑工业出版社, 2009.
HE P, SUN G, WANG F, et al.Heating engineering[M]. Fourth edition. Beijing: China Architecture & Building Press, 2009.

基金

国家重点研发计划(2021YFE0194500)

PDF(1760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/