基于MEEMD-QUATRE-BILSTM的短期光伏出力区间预测

张程, 林谷青, 匡宇

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 40-54.

PDF(2881 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2881 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 40-54. DOI: 10.19912/j.0254-0096.tynxb.2022-1067

基于MEEMD-QUATRE-BILSTM的短期光伏出力区间预测

  • 张程1,2, 林谷青1, 匡宇1
作者信息 +

SHORT-TERM PV OUTPUT INTERVAL PREDICTION BASED ON MEEMD-QUATRE-BILSTM

  • Zhang Cheng1,2, Lin Guqing1, Kuang Yu1
Author information +
文章历史 +

摘要

提出一种基于改进集成经验模态分解(MEEMD)和拟仿射变换(QUATRE)优化双向长短期记忆神经网络(BILSTM)的光伏出力区间预测模型。通过主成分分析法(PCA)对时间序列进行降维处理,利用K-均值算法将降维数据分成3种类型气象数据;然后采用MEEMD对每类光伏出力序列进行分解,将其输入QUATRE优化BILSTM神经网络和核密度估计算法(KDE)联合构建的短期光伏出力区间预测模型。最后基于宁夏光伏电站实例仿真评估模型区间预测性能,实验结果表明该模型可生成高水平光伏预测区间,能够为电力系统经济稳定运行提供可靠的决策保障。

Abstract

In this paper, a prediction model of PV output interval based on improved ensemble empirical mode decomposition (MEEMD) and quasi affine transformation (QUATRE) optimized BILSTM was proposed. Principal component analysis(PCA) was used to reduce dimension of time series, and K-means clustering algorithm was used to divide dimension reduction data into three types of meteorological data. Then MEEMD was used to decompose the output sequence of each type of PV and input it into the short-term PV output interval prediction model jointly constructed by QUATRE optimized BILSTM neural network and kernel density estimation(KDE) algorithm. Finally, the interval prediction performance of the model is evaluated based on the example of Ningxia photovoltaic power station. The experimental results show that the model can generate a high level of photovoltaic prediction interval and provide reliable decision-making guarantee for the economic and stable operation of the power system.

关键词

光伏发电 / 数据挖掘 / 预测 / 改进的集成经验模态分解 / 拟仿射变换进化算法 / 双向长短期记忆网络

Key words

photovoltaic power / data mining / forecasting / modified ensemble empirical mode decomposition / quasi-affine transformation evolutionary algorithm / bi-directional long-short-term memory (BILSTM) network

引用本文

导出引用
张程, 林谷青, 匡宇. 基于MEEMD-QUATRE-BILSTM的短期光伏出力区间预测[J]. 太阳能学报. 2023, 44(11): 40-54 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1067
Zhang Cheng, Lin Guqing, Kuang Yu. SHORT-TERM PV OUTPUT INTERVAL PREDICTION BASED ON MEEMD-QUATRE-BILSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 40-54 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1067
中图分类号: TM615   

参考文献

[1] PILLOT B, MUSELLI M, POGGI P, et al.Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa:the case of solar PV[J]. Energy policy,2019, 127: 113-124.
[2] 李升, 卫志农, 孙国强, 等. 大规模光伏发电并网系统电压稳定分岔研究[J]. 电力自动化设备, 2016, 36(1): 17-23.
LI S, WEI Z N, SUN G Q, et al.Voltage stability bifurcation of large-scale grid-connected PV system[J]. Electric power automation equipment, 2016, 36(1): 17-23.
[3] 崔杨, 张汇泉, 仲悟之, 等. 考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J]. 高电压技术, 2020,46(5): 1486-1496.
CUI Y, ZHANG H Q, ZHONG W Z, et al.Multi-source optimal scheduling of renewable energy high-permeability power system with CSP plants considering demand response[J]. High voltage engineering, 2020, 46(5): 1486-1496.
[4] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[5] 杨锡运, 张璜, 关文渊, 等. 基于滑动分块百分位数Bootstrap法的风电功率概率区间预测[J]. 太阳能学报, 2019, 40(2): 430-437.
YANG X Y, ZHANG H, GUAN W Y, et al.Probabilistic intervals forecasting of wind power based on moving block percentile bootstrap method[J]. Acta energiae solaris sinica, 2019, 40(2): 430-437.
[6] 李燕青, 杜莹莹. 基于双维度顺序填补框架与改进Kohonen天气聚类的光伏发电短期预测[J]. 电力自动化设备, 2019, 39(1): 60-65.
LI Y Q, DU Y Y.Short-term photovoltaic power forecasting based on double-dimensional sequential imputation framework and improved Kohonen clustering[J]. Electric power automation equipment, 2019, 39(1): 60-65.
[7] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[8] BEHERA M K, NAYAK N.A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm[J]. Engineering science and technology, 2020, 23(1): 156-167.
[9] 魏乐, 李思莹. 基于MEEMD-LSSVM的风电功率超短期预测研究[J]. 智慧电力, 2020, 48(5): 21-26.
WEI L, LI S Y.Ultra-short-term forecast for wind power based on MEEMD-LSSVM[J]. Smart power, 2020, 48(5): 21-26.
[10] 谢小瑜, 周俊煌, 张勇军, 等. 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45(8): 175-184.
XIE X Y, ZHOU J H, ZHANG Y J, et al.W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J]. Automation of electric power systems, 2021, 45(8): 175-184.
[11] 杨茂, 张强. 风电功率超短期预测误差的非参数估计分布研究[J]. 东北电力大学学报, 2018, 38(1): 15-20.
YANG M, ZHANG Q.The research of ultra short-term wind power prediction error distribution based on nonparametric estimation[J]. Journal of Northeast Electric Power University, 2018, 38(1): 15-20.
[12] BIANCHI F M, DE SANTIS E, RIZZI A, et al.Short-term electric load forecasting using echo state networks and PCA decomposition[J]. IEEE access, 2015, 3: 1931-1943.
[13] LIN P J, PENG Z N, LAI Y F, et al.Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets[J]. Energy conversion and management, 2018, 177: 704-717.
[14] GU X H, YANG S P, LIU Y Q, et al.Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis[J]. Measurement science and technology, 2016, 27(12): 125019.
[15] 郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21): 21-26, 46.
ZHENG J D, CHENG J S, YANG Y.Modified EEMD algorithm and its applications[J]. Journal of vibration and shock, 2013, 32(21): 21-26, 46.
[16] CHEN J Y, ZHOU D, LYU C, et al.An integrated method based on CEEMD-SampEn and the correlation analysis algorithm for the fault diagnosis of a gearbox under different working conditions[J]. Mechanical systems and signal processing, 2018, 113: 102-111.
[17] MENG Z Y, PAN J S, XU H R.QUasi-affine TRansformation Evolutionary (QUATRE) algorithm: a cooperative swarm based algorithm for global optimization[J]. Knowledge-based systems, 2016, 109: 104-121.
[18] MENG Z Y, PAN J S.QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): an enhanced structure for Differential Evolution[J]. Knowledge-based systems, 2018, 155: 35-53.
[19] MENG Z Y, PAN J S.Monkey King Evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization[J]. Knowledge-based systems, 2016, 97: 144-157.
[20] SONG X Y, LIU Y T, XUE L, et al.Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model[J]. Journal of petroleum science and engineering, 2020, 186: 106682.
[21] KARIM F, MAJUMDAR S, DARABI H, et al.LSTM fully convolutional networks for time series classification[J]. IEEE access, 2017, 6: 1662-1669.
[22] XIA T B, SONG Y, ZHENG Y, et al.An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in industry, 2020, 115: 103182.
[23] WANG S X, WANG X, WANG S M, et al.Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting[J]. International journal of electrical power & energy systems, 2019, 109: 470-479.
[24] LI W D, NG W W Y, WANG T, et al. HELP: an LSTM-based approach to hyperparameter exploration in neural network learning[J]. Neurocomputing, 2021, 442: 161-172.
[25] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.

基金

国家自然科学基金(51677059); 福建省财政厅专项(GY-Z220230); 福建省自然科学基金(2023J01951)

PDF(2881 KB)

Accesses

Citation

Detail

段落导航
相关文章

/