基于EMD-TCN的多能供热系统太阳辐照度预测模型

闫文杰, 徐志杰, 薛桂香, 宋建材, 杜欣瑜

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 182-188.

PDF(4268 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4268 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 182-188. DOI: 10.19912/j.0254-0096.tynxb.2022-1074

基于EMD-TCN的多能供热系统太阳辐照度预测模型

  • 闫文杰1, 徐志杰1, 薛桂香1, 宋建材2, 杜欣瑜3
作者信息 +

SOLAR IRRADIANCE FORECASTING MODEL BASED ON EMD-TCN FOR MULTI-ENERGY HEATING SYSTEMS

  • Yan Wenjie1, Xu Zhijie1, Xue Guixiang1, Song Jiancai2, Du Xinyu3
Author information +
文章历史 +

摘要

针对太阳辐照度的非平稳性和非线性影响多能供热系统运行效率和可靠性问题,该文提出一种基于经验模态分解 (EMD) 和时间卷积网络 (TCN) 的太阳辐照度混合预测模型EMD-TCN,更精准地从气象数据中提取太阳辐照度非线性和非平稳的隐含特征,获得更佳的预测精度。该研究利用逐时气象数据对所提出的EMD-TCN模型进行不同时间尺度的太阳辐照度预测实验,并与4种主流深度学习预测算法进行对比分析,结果表明该太阳辐照度预测模型具有更高的预测精度和泛化能力。

Abstract

Aiming at the problem that the non-stationary and non-linear of solar irradiance affects the operation efficiency and reliability of multi-energy heating system, this paper proposes a hybrid forecasting model of solar irradiance based on empirical mode decomposition (EMD) and temporal convolutional network (TCN) named EMD-TCN, which can extract the hidden features of non-linear and non-stationary of solar irradiance from meteorological data more accurately, and obtain better prediction accuracy. The proposed EMD-TCN model is used to predict solar irradiance at different time scales using hourly meteorological data, and compared with four mainstream deep learning prediction algorithms. The results show that the proposed solar irradiance prediction model has higher prediction accuracy and generalization ability.

关键词

时间卷积网络 / 经验模态分解 / 太阳辐照度预测 / 多能供热系统

Key words

temporal convolutional network / empirical mode decomposition / solar irradiance forecasting / multi-energy heating systems

引用本文

导出引用
闫文杰, 徐志杰, 薛桂香, 宋建材, 杜欣瑜. 基于EMD-TCN的多能供热系统太阳辐照度预测模型[J]. 太阳能学报. 2023, 44(11): 182-188 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1074
Yan Wenjie, Xu Zhijie, Xue Guixiang, Song Jiancai, Du Xinyu. SOLAR IRRADIANCE FORECASTING MODEL BASED ON EMD-TCN FOR MULTI-ENERGY HEATING SYSTEMS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 182-188 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1074
中图分类号: TU832.1   

参考文献

[1] 姚华, 黄云, 徐敬英, 等. 我国北方地区清洁供暖技术现状与问题探讨[J]. 中国科学院院刊, 2020, 35(9): 1177-1188.
YAO H, HUANG Y, XU J Y, et al.Technology status and discussion on challenges of clean heating in northern China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(9): 1177-1188.
[2] 周伟, 周旭, 李兆碧, 等. 京津冀地区清洁能源供暖对雾霾的影响[J]. 重庆交通大学学报(自然科学版), 2020, 39(4): 98-103.
ZHOU W, ZHOU X, LI Z B, et al.Impact of clean energy heating on fog and haze in Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Chongqing Jiaotong University (natural science), 2020, 39(4): 98-103.
[3] 宋玲玲, 何军, 武娟妮, 等. 我国北方地区冬季清洁取暖试点实施评估研究[J]. 环境保护, 2019, 47(9): 64-68.
SONG L L, HE J, WU J N, et al.Study on the implementation evaluation of clean heating pilot city in northern China[J]. Environmental protection, 2019, 47(9): 64-68.
[4] 凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868.
LING H S, HE J D, XU Y J, et al.Status and prospect of thermal energy storage technology for clean heating[J]. Energy storage science and technology, 2020, 9(3): 861-868.
[5] 刘艳峰, 周位华, 罗西, 等. 川西高山峡谷区空气源热泵多源互补供热系统热源方案比选及优化设计[J]. 太阳能学报, 2021, 42(10): 478-486.
LIU Y F, ZHOU W H, LUO X, et al.Comparison and optimal design of multi-source complementary heating system based on air source heat pump in alpine canyon area of western Sichuan[J]. Acta energiae solaris sinica, 2021, 42(10): 478-486.
[6] 尚庆晓, 孙鸣. 基于风电、储(热)供暖系统的电网优化调度研究[J]. 太阳能学报, 2021, 42(7): 65-70.
SHANG Q X, SUN M.Optimal dispatching of power grid based on wind power and heat storage heating system[J]. Acta energiae solaris sinica, 2021, 42(7): 65-70.
[7] 刘艳峰, 宋梦瑶, 周勇, 等. 分区串并联式太阳能-地源热泵跨季节蓄热组合系统性能研究[J]. 太阳能学报, 2021, 42(12): 71-79.
LIU Y F, SONG M Y, ZHOU Y, et al.Research on performance of subarea series-parallel solar assisted ground source heat pump system[J]. Acta energiae solaris sinica, 2021, 42(12): 71-79.
[8] A LVAREZ-ALVARADO J M, RÍOS-MORENO J G, OBREGÓN-BIOSCA S A, et al. Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: a review[J]. Applied sciences, 2021, 11(3): 1044.
[9] HUANG J, KOROLKIEWICZ M, AGRAWAL M, et al.Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system (CARDS) model[J]. Solar energy, 2013, 87: 136-149.
[10] YAN J C, HU L, ZHEN Z, et al.Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model[J]. IEEE transactions on industry applications, 2021, 57(4): 3282-3295.
[11] MELLIT A, PAVAN A M.A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar energy, 2010, 84(5): 807-821.
[12] JIMENEZ P A, HACKER J P, DUDHIA J, et al.WRF-solar: description and clear-sky assessment of an augmented NWP model for solar power prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(7): 1249-1264.
[13] 刘剑, 曹美燕, 高治军, 等. 一种基于随机森林的太阳能辐射预测模型[J]. 控制工程, 2017, 24(12): 2472-2477.
LIU J, CAO M Y, GAO Z J, et al.A Solar radiation prediction model based on random forest[J]. Control engineering of China, 2017, 24(12): 2472-2477.
[14] 田翠霞, 黄敏, 朱启兵. 基于EMD-LMD-LSSVM联合模型的逐时太阳辐照度预测[J]. 太阳能学报, 2018, 39(2): 504-512.
TIAN C X, HUANG M, ZHU Q B.Hourly solar irradiance forecast based on EMD-LMD-LSSVM joint model[J]. Acta energiae solaris sinica, 2018, 39(2): 504-512.
[15] LI C, ZHANG Y N, ZHAO G H, et al.Hourly solar irradiance prediction using deep BiLSTM network[J]. Earth science informatics, 2021, 14(1): 299-309.

基金

国家自然科学基金(61702157); 河北省省级科技计划软科学研究专项(22554502D)

PDF(4268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/