质子交换膜电解池二维两相流综合模拟研究

舒展宏, 陈蕊, 宋浩, 张恒, 刘艺灏, 詹志刚

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 450-458.

PDF(2162 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2162 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 450-458. DOI: 10.19912/j.0254-0096.tynxb.2022-1083

质子交换膜电解池二维两相流综合模拟研究

  • 舒展宏1,2, 陈蕊1,2, 宋浩2,3, 张恒2,3, 刘艺灏2, 詹志刚1~3
作者信息 +

TWO-DIMENSIONAL COMPREHENSIVE SIMULATION STUDY OF TWO-PHASE FLOW IN PROTON EXCHANGE MEMBRANE ELECTROLYZER CELL

  • Shu Zhanhong1,2, Chen Rui1,2, Song Hao2,3, Zhang Heng2,3, Liu Yihao2, Zhan Zhigang1~3
Author information +
文章历史 +

摘要

建立一个二维、非等温质子交换膜电解池两相流稳态模型,研究不同电压下电解池膜电极组件(MEA)中温度、液态水饱和度、膜态水分布以及温度、液态水饱和度和膜厚对质子交换膜电解池性能的影响,并通过实验验证模型的可靠性。实验结果表明:即使忽略接触电阻,膜润湿性较好,高电压(2.0 V)下欧姆损失占比仍可达到34.7%;随着电压的增大,极化损失的主导部分由活化损失变为欧姆损失,且传质损失占总极化损失的比例最小;当电压较小时,膜水含量是质子交换膜(PEM)电导率的主要影响因素,当电压较大时,温度是PEM电导率的主要影响因素。升高温度、增加液态水饱和度及降低膜厚均能有效提高电解池的性能。

Abstract

In the study, a two-dimensional, non-isothermal, two-phase flow steady-state model of proton exchange membrane (PEM) electrolyzer cell is established to study the distribution of temperature, liquid water saturation and membrane water content at different voltages in the membrane electrode assembly of electrolyzer cell. Besides, the effects of temperature, liquid water saturation and membrane thickness on the performance of electrolyzer cell are investigated. The reliability of the model is validated by experimental results. The results show that although the contact resistance is neglected and the membrane wettability is good, the percentage of the ohmic loss can still reach up to 34.7% at high voltage (2 V). As the cell voltage increases, the dominant factor of the overpotential changes from activation loss to ohmic loss, and the loss of mass transfer accounts for a minor proportion of the total overpotential. When the voltage is lower, the membrane water content is the main factor affecting the PEM conductivity, and when voltage is greater, the temperature becomes the main factor to determine the PEM conductivity. The performance of the PEM electrolyzer cells can be effectively improved by increasing the temperature and the liquid water saturation, or decreasing the membrane thickness.

关键词

质子交换膜 / 两相流 / 水含量 / 电解制氢 / 液态水饱和度 / 温度

Key words

proton exchange membrane / two-phase flow / water content / electrolytic hydrogen production / liquid water saturation / temperature

引用本文

导出引用
舒展宏, 陈蕊, 宋浩, 张恒, 刘艺灏, 詹志刚. 质子交换膜电解池二维两相流综合模拟研究[J]. 太阳能学报. 2023, 44(11): 450-458 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1083
Shu Zhanhong, Chen Rui, Song Hao, Zhang Heng, Liu Yihao, Zhan Zhigang. TWO-DIMENSIONAL COMPREHENSIVE SIMULATION STUDY OF TWO-PHASE FLOW IN PROTON EXCHANGE MEMBRANE ELECTROLYZER CELL[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 450-458 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1083
中图分类号: TM911.4   

参考文献

[1] 万年坊. 质子交换膜水电解制氢膜电极研究进展[J]. 化工进展, 2022, 41(12): 6385-6394.
WAN N F.Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production[J]. Chemical industry and engineering progress, 2022, 41(12): 6385-6394.
[2] 纪钦洪, 徐庆虎, 于航, 等. 质子交换膜水电解制氢技术现状与展望[J]. 现代化工, 2021, 41(4): 72-76, 81.
JI Q H, XU Q H, YU H, et al.Status and trend of hydrogen production technologies through water electrolysis by proton exchange membrane[J]. Modern chemical industry, 2021, 41(4): 72-76, 81.
[3] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
HE Z X, SHI C X, CHEN Z C, et al.Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical industry and engineering progress, 2021, 40(9): 4762-4773.
[4] MAJASAN J O, CHO J I S, DEDIGAMA I, et al. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: electrochemical and optical characterisation[J]. International journal of hydrogen energy, 2018, 43(33): 15659-15672.
[5] LEE C, LEE J K, ZHAO B, et al.Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers[J]. Journal of power sources, 2020, 446: 227312.
[6] ZHANG Z Q, XING X H.Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell[J]. International journal of hydrogen energy, 2020, 45(39): 20184-20193.
[7] 伊许玲, 叶芳, 郭航, 等. 质子交换膜电解池两相传热传质瞬态响应二维数值模拟[J]. 可持续能源, 2018(1): 10-22.
YI X L, YE F, GUO H, et al.Two-dimensional numerical simulation of transient response of two-phase heat and mass transfer in a proton exchange membrane electrolyzer cell[J]. Sustainable energy, 2018(1): 10-22.
[8] SU X, XU L J, HU B.Simulation of proton exchange membrane electrolyzer: influence of bubble covering[J]. International journal of hydrogen energy, 2022, 47(46): 20027-20039.
[9] NIE J H, CHEN Y, COHEN S, et al.Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell[J]. International journal of thermal sciences, 2009, 48(10): 1914-1922.
[10] OLESEN A C, RØMER C, KÆR S K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell[J]. International journal of hydrogen energy, 2016, 41(1): 52-68.
[11] HAN B, MO J K, KANG Z Y, et al.Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells[J]. Electrochimica acta, 2016, 188: 317-326.
[12] HAN B, MO J K, KANG Z Y, et al.Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy[J]. International journal of hydrogen energy, 2017, 42(7): 4478-4489.
[13] WU L Z, ZHANG G B, XIE B A, et al.Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell[J]. International journal of green energy, 2021, 18(6): 541-555.
[14] 焦魁, 张国宾, 武立振. 质子交换膜电解池三维全电池模型的建立方法: CN111914414A[P].2020-11-10.
JIAO K, ZHANG G B, WU L Z. Method for establishing three-dimensional total battery model of proton exchange membrane electrolytic cell: CN111914414A[P].2020-11-10.
[15] WANG Z M, XU C, WANG X Y, et al.Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell[J]. Science China technological sciences, 2021, 64(7): 1555-1566.
[16] 王志明. 质子交换膜电解池性能模拟及实验研究[D]. 北京: 华北电力大学, 2021.
WANG Z M.Numerical and experimental study on performance of proton exchange membrane electrolysis cell[D]. Beijing: North China Electric Power University, 2021.
[17] ZHANG H, RAHMAN M A, MOJICA F, et al.A comprehensive two-phase proton exchange membrane fuel cell model coupled with anisotropic properties and mechanical deformation of the gas diffusion layer[J]. Electrochimica acta, 2021, 382: 138273.
[18] GUO Q, GUO H, YE F, et al.A numerical study of dynamic behaviors of a unitized regenerative fuel cell during gas purging[J]. International journal of hydrogen energy, 2022, 47(52): 22203-22214.

基金

国家自然科学基金(22179103); 中央高校基本科研业务费专项(2022IVA174); 佛山仙湖实验室开放基金重点项目(XHD2020-002)

PDF(2162 KB)

Accesses

Citation

Detail

段落导航
相关文章

/