基于EEMD-ALOCO-SVM模型的光伏功率短期区间预测

吴汉斌, 时珉, 郑焕坤, 张纪欣, 张华铭

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 64-71.

PDF(1798 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1798 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 64-71. DOI: 10.19912/j.0254-0096.tynxb.2022-1096

基于EEMD-ALOCO-SVM模型的光伏功率短期区间预测

  • 吴汉斌1, 时珉2, 郑焕坤3, 张纪欣1, 张华铭4
作者信息 +

SHORT-TERM INTERVAL PREDICTION OF PHOTOVOLTAIC POWER BASED ON EEMD-ALOCO-SVM MODEL

  • Wu Hanbin1, Shi Min2, Zheng Huankun3, Zhang Jixin1, Zhang Huaming4
Author information +
文章历史 +

摘要

光伏发电功率的预测方法目前分为点值预测和区间预测两类,但点值预测方法难以适应光伏功率的随机性和波动性,因此,该文构建一种基于集合经验模态分解(EEMD)和混沌蚁狮算法(ALOCO)的支持向量机(SVM)光伏功率区间短期预测模型。首先,通过灰色关联度筛选出不同环境条件的相似日样本集,并利用EEMD将光伏出力序列分解成不同的本征模态函数;然后,利用混沌蚁狮算法对SVM的误差惩罚因子C和核函数参数γ进行优化,并利用分位数回归法对光伏的输出功率进行短期区间预测;最后,通过算例数据验证所建立模型的有效性。

Abstract

The prediction methods of photovoltaic power generation are currently divided into: point value prediction and interval prediction, but point value prediction methods are difficult to adapt to the randomness and volatility of photovoltaic power. So this paper proposes a support vector machine (SVM) short-term photovoltaic power interval prediction model based on ensemble empirical mode decomposition (EEMD) and ant lion optimizer based on chaos optimization (ALOCO). First, similar daily sample sets with different environmental conditions are screened out by grey correlation degree, and the photovoltaic output sequence is decomposed into different eigenmode functions by EEMD. Then, the error penalty factor C and kernel function parameter γ of SVM are optimized by chaotic ant lion algorithm, The and the quantile regression method is used to predict the photovoltaic output power in a short-term interval. Finally, the validity of the established model is verified by example data.

关键词

光伏发电系统 / 支持向量机 / 蚁群优化 / 集合经验模态分解 / 功率预测 / 区间预测

Key words

photovoltaic power generation system / support vector machine / ant lion algorithm based on chaos optimization / ensemble empirical mode decomposition / power prediction / interval prediction

引用本文

导出引用
吴汉斌, 时珉, 郑焕坤, 张纪欣, 张华铭. 基于EEMD-ALOCO-SVM模型的光伏功率短期区间预测[J]. 太阳能学报. 2023, 44(11): 64-71 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1096
Wu Hanbin, Shi Min, Zheng Huankun, Zhang Jixin, Zhang Huaming. SHORT-TERM INTERVAL PREDICTION OF PHOTOVOLTAIC POWER BASED ON EEMD-ALOCO-SVM MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 64-71 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1096
中图分类号: TK513.5   

参考文献

[1] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析[J]. 太阳能学报, 2021, 42(8): 191-199.
YAN G G, ZHANG S F, JIA Q, et al.Mechanism analysis of PV generation actively participating in power grid frequency regulation[J]. Acta energiae solaris sinica, 2021, 42(8): 191-199.
[2] 陆思佳, 葛玉林. 基于EMD与FA-SVM的光伏出力超短期预测[J]. 黑龙江电力, 2019, 41(5): 382-386.
LU S J, GE Y L.Ultra-short-term prediction of photovoltaic output based on EMD and FA-SVM[J]. Heilongjiang electric power, 2019, 41(5): 382-386.
[3] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238.
LYU W J, FANG Y F, CHENG Z.Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power system technology, 2022, 46(1): 231-238.
[4] 王新普, 周想凌, 邢杰, 等. 一种基于改进灰色BP神经网络组合的光伏出力预测方法[J]. 电力系统保护与控制, 2016, 44(18): 81-87.
WANG X P, ZHOU X L, XING J, et al.A prediction method of PV output power based on the combination of improved grey back propagation neural network[J]. Power system protection and control, 2016, 44(18): 81-87.
[5] 黄磊, 舒杰, 姜桂秀, 等. 基于多维时间序列局部支持向量回归的微网光伏发电预测[J]. 电力系统自动化, 2014, 38(5): 19-24.
HUANG L, SHU J, JIANG G X, et al.Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J]. Automation of electric power systems, 2014, 38(5): 19-24.
[6] 张静, 褚晓红, 黄学安, 等. 一种基于加权马尔科夫链修正的SVM光伏出力预测模型[J]. 电力系统保护与控制, 2019, 47(19): 63-68.
ZHANG J, CHU X H, HUANG X A, et al.A model for photovoltaic output prediction based on SVM modified by weighted Markov chain[J]. Power system protection and control, 2019, 47(19): 63-68.
[7] 孙东磊, 王艳, 于一潇, 等. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报(工学版), 2020, 50(5): 70-76.
SUN D L, WANG Y, YU Y X, et al.Interval prediction of short-term regional photovoltaic power based on BP neural network[J]. Journal of Shandong University (engineering science), 2020, 50(5): 70-76.
[8] ZIADI Z, OSHIRO M, SENJYU T, et al.Optimal voltage control using inverters interfaced with PV systems considering forecast error in a distribution system[J]. IEEE transactions on sustainable energy, 2014, 5(2): 682-690.
[9] CHAI S J, NIU M, ZHAO X, et al.Nonparametric conditional interval forecasts for PV power generation considering the temporal dependence[C]// 2016 IEEE Power & Energy Society General Meeting (PESGM). Boston, MA, USA, 2016.
[10] 梅飞, 顾佳琪, 裴鑫, 等. 基于自适应滚动匹配预测修正模式的光伏区间预测[J]. 电力自动化设备, 2022, 42(2): 92-98.
MEI F, GU J Q, PEI X, et al.Photovoltaic interval prediction based on adaptive rolling matching prediction correction mode[J]. Electric power automation equipment, 2022, 42(2): 92-98.
[11] 贾德香, 吕干云, 林芬, 等. 基于SAPSO-BP和分位数回归的光伏功率区间预测[J]. 电力系统保护与控制, 2021, 49(10): 20-26.
JIA D X, LYU G Y, LIN F, et al.Photovoltaic power interval prediction based on SAPSO-BP and quantile regression[J]. Power system protection and control, 2021, 49(10): 20-26.
[12] WU Z H, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1: 1-41.
[13] VAPNIK V.Statistical learning theory[M]. DBLP, 1998.
[14] 吴伟民, 张晶晶, 林志毅, 等. 双重反馈机制的蚁狮算法[J]. 计算机工程与应用, 2017, 53(12): 31-35, 75.
WU W M, ZHANG J J, Lin Z Y, et al.Antlion optimization algorithm based on double feedback mechanism[J]. Computer engineering and applications, 2017, 53(12): 31-35, 75.
[15] MIRJALILI S.The ant lion optimizer[J]. Advances in engineering software, 2015, 83: 80-98.
[16] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259.
ZHANG N, GE L J.Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 252-259.
[17] WANG Y L, SONG F H, MA Y Z, et al.Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system[J]. Applied thermal engineering, 2020, 180: 115834.
[18] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.

基金

保定分布式光伏功率预测完善项目(B104BD210230); 国家高技术研究发展(863)计划(2015AA050603)

PDF(1798 KB)

Accesses

Citation

Detail

段落导航
相关文章

/