双重不确定性预测下风电场超短期有功优化控制

贺敬, 李少林, 蔡玮, 姚琦

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 270-278.

PDF(3165 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3165 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 270-278. DOI: 10.19912/j.0254-0096.tynxb.2022-1101

双重不确定性预测下风电场超短期有功优化控制

  • 贺敬1, 李少林1, 蔡玮2, 姚琦3
作者信息 +

OPTIMAL CONTROL OF WIND FARM POWER BASED ON DOUBLE UNCERTAINTY PREDICTION

  • He Jing1, Li Shaolin1, Cai Wei2, Yao Qi3
Author information +
文章历史 +

摘要

针对风电场并网友好性提升问题,提出考虑风速预测不确定性和风电机组有功特性不确定性的风电场发电能力评估方案。对风速超短期预测误差和风电机组在各风速区间的出力特性进行双重不确定性分析并建立概率分布模型,进而利用贝叶斯网络构建风电机组超短期出力的双重不确定性概率预测模型。基于风电场各风电机机组超短期出力概率预测模型,以最大概率跟踪电网调度指令为目标设计场站功率分配策略。算例分析表明,所提考虑双重不确定性的概率预测模型对机风电组有功的概率分布描述更准确,该模型在场站控制中可有效提升电网功率指令的完成水平。

Abstract

Aiming at the problem of improving the grid-connected friendliness of wind farms, a wind farm generation capacity evaluation scheme considering uncertain wind speed prediction and uncertain active power characteristics of wind turbines is proposed. By analyzing the wind speed ultra-short-term prediction error and the wind turbine output characteristics in each wind speed range and establishing two probability distribution models, a double uncertainty prediction model of the wind turbine output in the ultra-short term is constructed using Bayesian network. Based on the proposed prediction model for each wind turbine, the power distribution strategy of the wind farm is designed with the objective of tracking the dispatching command with maximum probability. The analysis shows that the proposed prediction model with double uncertainty is more accurate in describing the probability distribution of the wind turbines'active power, and the proposed model can effectively improve the completion level of the grid power command in the wind farm control.

关键词

风电场 / 不确定性分析 / 贝叶斯网络 / 有功控制

Key words

wind farm / uncertainty analysis / Bayesian networks / active power control

引用本文

导出引用
贺敬, 李少林, 蔡玮, 姚琦. 双重不确定性预测下风电场超短期有功优化控制[J]. 太阳能学报. 2023, 44(11): 270-278 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1101
He Jing, Li Shaolin, Cai Wei, Yao Qi. OPTIMAL CONTROL OF WIND FARM POWER BASED ON DOUBLE UNCERTAINTY PREDICTION[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 270-278 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1101
中图分类号: TM614   

参考文献

[1] 袁桂丽, 刘培德, 贾新潮, 等. 计及绿色电力证书制度的经济性优化调度[J]. 太阳能学报, 2021, 42(4): 139-146.
YUAN G L, LIU P D, JIA X C, et al.Economic optimal scheduling considering tradable green certificate system[J]. Acta energiae solaris sinica, 2021, 42(4): 139-146.
[2] 国家能源局. 国家能源局综合司关于公开征求对《并网主体并网运行管理规定(征求意见稿)》《电力系统辅助服务管理办法(征求意见稿)》意见的公告[EB/OL].[2022-06-10]. http://www.nea.gov.cn/2021-08/31/c_1310 159654.htm.
[3] 国家能源局南方监管局. 关于公开征求《南方区域电力并网运行管理实施细则》《南方区域电力辅助服务管理实施细则》(征求意见稿)意见的通告[EB/OL].[2022-06-10]. http://nfj.nea.gov.cn/adminContent/init View Cont ent. do?pk=4028811c7d55f39b017fba04675201b9.
[4] 程建东, 赵浩然, 韩明哲. 市场机制下推动风电参与电力市场的实践总结与启示[J]. 电网技术, 2022, 46(7): 2619-2631.
CHENG J D, ZHAO H R, HAN M Z, et al.Practice summary and enlightenment of promoting wind power to participate in power market under market mechanism[J]. Power system technology, 2022, 46(7): 2619-2631.
[5] 张国斌, 陈玥, 张佳辉, 等. 风-光-水-火-抽蓄联合发电系统日前优化调度研究[J]. 太阳能学报, 2020, 41(8): 79-85.
ZHANG G B, CHEN Y, ZHANG J H, et al.Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(8): 79-85.
[6] 孙舶皓, 汤涌, 叶林, 等. 基于分层分布式模型预测控制的多时空尺度协调风电集群综合频率控制策略[J]. 中国电机工程学报, 2019, 39(1): 155-167, 330.
SUN B H, TANG Y, YE L, et al.Integrated frequency control strategy for wind power cluster with multiple temporal-spatial scale coordination based on H-DMPC[J]. Proceedings of the CSEE, 2019, 39(1): 155-167, 330.
[7] WANG N, LI J, YU X, et al.Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation[J]. Renewable energy, 2020, 148: 113-123.
[8] LI W, KONG D A, XU Q, et al.A wind farm active power dispatch strategy considering the wind turbine power-tracking characteristic via model predictive control[J]. Processes, 2019, 7(8): 530.
[9] 孙辉, 徐箭, 孙元章, 等. 基于混合整数线性规划的风电场有功优化调度[J]. 电力系统自动化, 2016, 40(22): 27-33, 42.
SUN H, XU J, SUN Y Z, et al.Active power optimization scheduling of wind farm based on mixed-integer linear programming[J]. Automation of electric power systems, 2016, 40(22): 27-33, 42.
[10] WANG Z G, WU W C.Coordinated control method for DFIG-based wind farm to provide primary frequency regulation service[J]. IEEE transactions on power systems, 2018, 33(3): 2644-2659.
[11] 叶林, 任成, 李智, 等. 风电场有功功率多目标分层递阶预测控制策略[J]. 中国电机工程学报, 2016, 36(23): 6327-6336, 6597.
YE L, REN C, LI Z, et al.Stratified progressive predictive control strategy for multi-objective dispatching active power in wind farm[J]. Proceedings of the CSEE, 2016, 36(23): 6327-6336, 6597.
[12] 林俐, 谢永俊, 朱晨宸, 等. 基于优先顺序法的风电场限出力有功控制策略[J]. 电网技术, 2013, 37(4): 960-966.
LIN L, XIE Y J, ZHU C C, et al.Priority list-based output-restricted active power control strategy for wind farms[J]. Power system technology, 2013, 37(4): 960-966.
[13] CHE L, LIU X, ZHU X, et al.Intra-interval security based dispatch for power systems with high wind penetration[J]. IEEE transactions on power systems, 2019, 34(2): 1243-1255.
[14] ZARE A, CHUNG C Y, ZHAN J P, et al.A distributionally robust chance-constrained MILP model for multistage distribution system planning with uncertain renewables and loads[J]. IEEE transactions on power systems, 2018, 33(5): 5248-5262.
[15] WANG Y, ZOU R M, LIU F, et al.A review of wind speed and wind power forecasting with deep neural networks[J]. Applied energy, 2021, 304: 117766.
[16] 张驰. 风电场短期风速预测若干问题研究[D]. 南京: 东南大学, 2017.
ZHANG C.Research on some issues of short-term wind speed forecasting for wind farms[D]. Nanjing: Southeast University, 2017.
[17] ZHU X X, GENTON M G.Short-term wind speed forecasting for power system operations[J]. International statistical review, 2012, 80(1): 2-23.
[18] 戴剑丰, 阎诚, 汤奕. 基于时序残差概率的风电场超短期风速混合预测模型[J]. 电网技术, 2023, 47(2): 688-699.
DAI J F, YAN C, TANG Y.Ultra-short-term wind speed hybrid forecasting model for wind farms based on time series residual probability modeling[J]. Power system technology, 2023, 47(2): 688-699.
[19] 王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892.
WANG Y H, SHI Y X, ZHOU X, et al.Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention[J]. High voltage engineering, 2022, 48(5): 1884-1892.
[20] 张妍, 韩璞, 王东风, 等. 基于变分模态分解和LSSVM的风电场短期风速预测[J]. 太阳能学报, 2018, 39(1): 194-202.
ZHANG Y, HAN P, WANG D F, et al.Short term prediction of wind speed for wind farm based on variational mode decomposition and LSSVM model[J]. Acta energiae solaris sinica, 2018, 39(1): 194-202.
[21] 刘军, 汪继勇. 基于风电机组健康状态的风电场功率分配研究[J]. 电力系统保护与控制, 2020, 48(20): 106-113.
LIU J, WANG J Y.Research on power distribution of a wind farm based on the healthy state of wind turbines[J]. Power system protection and control, 2020, 48(20): 106-113.
[22] 李茜, 毛雅铃, 王武双, 等. 基于动态机组分类的风电场优化调度[J]. 太阳能学报, 2021, 42(6): 419-424.
LI Q, MAO Y L, WANG W S, et al.Optimal scheduling of wind farms based on dynamic wind turbine clustering[J]. Acta energiae solaris sinica, 2021, 42(6): 419-424.
[23] HU Y, XI Y H, PAN C Y, et al.Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating[J]. Renewable energy, 2020, 146: 2095-2111.
[24] YUN E, HUR J.Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources[J]. Energy, 2021, 223: 120000.
[25] 赵振宇, 马旭, 包格日乐图. 基于风速预测模型的风电一次调频仿真研究[J]. 系统仿真学报, 2022, 34(10): 2233-2243.
ZHAO Z Y, MA X, BAO G.Wind power primary frequency regulation simulation based on wind speed prediction model[J]. Journal of system simulation, 2022, 34(10): 2233-2243.
[26] 乔依林. 风电运行数据预处理技术及其应用研究[D]. 北京: 华北电力大学, 2019.
QIAO Y L.Research on preprocessing of wind power operation data and its application[D]. Beijing: North China Electric Power University, 2019.
[27] 李聪聪, 王彤, 相禹维, 等. 基于改进高斯混合模型的概率潮流解析方法[J]. 电力系统保护与控制, 2020, 48(10): 146-155.
LI C C, WANG T, XIANG Y W, et al.Analytical method based on improved Gaussian mixture model for probabilistic load flow[J]. Power system protection and control, 2020, 48(10): 146-155.
[28] VU T K, HOANG M K, LE H L.An EM algorithm for GMM parameter estimation in the presence of censored and dropped data with potential application for indoor positioning[J]. ICT express, 2019, 5(2): 120-123.
[29] YAO Q, LIU J Z, HU Y.Optimized active power dispatching strategy considering fatigue load of wind turbines during de-loading operation[J]. IEEE access, 2019, 7: 17439-17449.
[30] ZHAO Y N, YE L, WANG W S, et al.Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE transactions on sustainable energy, 2018, 9(1): 95-105.
[31] MERAHI F, BERKOUK E M, MEKHILEF S.New management structure of active and reactive power of a large wind farm based on multilevel converter[J]. Renewable energy, 2014, 68: 814-828.

基金

新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司)开放基金(NYB51202101982)

PDF(3165 KB)

Accesses

Citation

Detail

段落导航
相关文章

/