[1] WISER R, LANTZ E, MAI T, et al.Wind vision: a new era for wind power in the United States[J]. The electricity journal, 2015, 28(9): 120-132. [2] Global Wind Energy Council. GWEC global wind report[R]. Brussels, Belgium: Global Wind Energy Council, 2022. 1-148. [3] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al.Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind energy, 2009, 12(5): 431-444. [4] CHEN Y, LI H, JIN K, et al.Wind farm layout optimization using genetic algorithm with different hub height wind turbines[J]. Energy conversion and management, 2013, 70: 56-65. [5] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116. [6] HOU P, HU W H, SOLTANI M, et al.Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1272-1282. [7] WANG Y, LIU H, LONG H, et al.Differential evolution with a new encoding mechanism for optimizing wind farm layout[J]. IEEE transactions on industrial informatics, 2017, 14(3): 1040-1054. [8] 袁桂丽, 吴振民, 刘骅骐, 等. 基于深度置信网络的短期风电功率预测[J]. 太阳能学报, 2022, 43(2): 451-457. YUAN G L, WU Z M, LIU H Q, et al.Short-term wind power prediction based on deep belief network[J]. Acta energiae solaris sinica, 2022, 43(2): 451-457. [9] 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测[J]. 电力系统自动化, 2022, 46(7): 141-151. SU X J, ZHOU W X, LI C J, et al.Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention[J]. Automation of electric power systems, 2022, 46(7): 141-151. [10] PARK J Y, PARK J K.Physics-induced graph neural network: an application to wind-farm power estimation[J]. Energy, 2019, 187(1): 115883-115897. [11] JENSEN N O.A note on wind generator interaction[M]. Roskilde, Denmark: Riso National Laboratory, 1983. [12] TAO S Y, XU Q S, FEIJÓO A, et al. Bi-hierarchy optimization of a wind farm considering environmental impact[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2515-2524. [13] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核[J]. 太阳能学报, 2021, 42(2): 129-135. SONG Y L, TIAN L L, ZHAO N.Proposal and validation of a new 3D wake model for wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 129-135. [14] SUN H Y, YANG H X.Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model[J]. Renewable energy, 2020, 147: 192-203. [15] FLEMING P, KING J, BAY C J, et al.Overview of FLORIS updates[J]. Journal of physics: conference series, 2020, 1618(2): 022028. [16] KING J, FLEMING P, KING R, et al.Control-oriented model for secondary effects of wake steering[J]. Wind energy science, 2021, 6(3): 701-714. [17] FARRELL A, KING J, DRAXL C, et al.Design and analysis of a wake model for spatially heterogeneous flow[J]. Wind energy science, 2021, 6(3): 737-758. [18] GUO X J, ZHANG Y, YAN J T, et al.Integrated dynamics response analysis for IEA 10-MW spar floating offshore wind turbine[J]. Journal of marine science and engineering, 2022, 10(4): 542-559. [19] STANLEY A P J, NING A. Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines[J]. Wind energy science, 2019, 4(1): 99-114. |