欢迎访问《太阳能学报》官方网站,今天是 2025年5月31日 星期六 分享到:
ISSN 0254-0096 CN 11-2082/K

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11): 279-286.DOI: 10.19912/j.0254-0096.tynxb.2022-1106

• • 上一篇    下一篇

基于图神经网络的非均匀风电场功率预测方法

刘德澳1, 董明刚1,2, 叶威1, 王彦1, 甘国军1   

  1. 1.桂林理工大学信息科学与工程学院,桂林 541004;
    2.广西嵌入式技术与智能系统重点实验室,桂林 541004
  • 收稿日期:2022-07-25 出版日期:2023-11-28 发布日期:2024-05-28
  • 通讯作者: 董明刚(1977—),男,博士、教授,主要从事智能计算、人工智能方面的研究。d2015mg@qq.com
  • 基金资助:
    国家自然科学基金(62366012; 61563012); 广西自然科学基金(2021GXNSFAA220074); 广西嵌入式技术与智能系统重点实验室基金 (2020-1-3)

POWER PREDICTION METHOD OF NON-UNIFORM WIND FARM LAYOUT BASED ON GRAPH NEURAL NETWORK

Liu Deao1, Dong Minggang1,2, Ye Wei1, Wang Yan1, Gan Guojun1   

  1. 1. School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China;
    2. Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin 541004, China
  • Received:2022-07-25 Online:2023-11-28 Published:2024-05-28

摘要: 针对现有的非均匀风电场发电功率预测方法准确度不高、可解释性差等问题,提出一种改进的物理引导的图神经网络(IPGNN)模型来预测非均匀风电场的发电功率输出。首先,构建一个基于三维高斯尾流模型的物理信息基函数,可更准确地反映非均匀风电场中风力机之间尾流相互作用的关系;其次,设计一组基于消息传递框架的图神经网络更新策略,该策略在图神经网络边缘更新中结合注意力机制将物理信息基函数作为权重更新函数,可增强模型的可解释性。在不同数量风力机下的非均匀风电场仿真实验表明,相比于基于一维尾流模型的PGNN模型和典型的数据驱动模型,IPGNN模型均可获得较好的预测效果,其中对具有20台风力机的非均匀风电场,发电功率预测平均绝对误差为3.92%,可认为是一种有效的非均匀风电场发电功率预测方法。

关键词: 深度学习, 图神经网络, 风电功率, 风电场, 数值模拟

Abstract: Aiming at the problems of low accuracy and poor interpretability of the existing power prediction methods of non-uniform wind farm layout, we propose an improved physics-induced graph neural network (IPGNN) model to predict the power output of non-uniform wind farms. Firstly, IPGNN constructs a physical information basis function based on three-dimensional Gaussian wake model, which can more accurately reflect the wake interaction between wind turbines in non-uniform wind farms; Secondly, IPGNN designs a set of graph neural network update strategies based on the message passing framework. In the graph neural network edge update strategy, combined with the attention mechanism, the physical information basis function is used as the weight update function, which enhances the interpretability of the model. The simulation experiments of non-uniform wind farms with different numbers of wind turbines show that IPGNN model has a good prediction effect compared with PGNN model based on one-dimensional wake model and typical data-driven model. For non-uniform wind farms with 20 wind turbines, the MAPE of power generation prediction is 3.92%. It is an effective method for power generation prediction of non-uniform wind farm layout.

Key words: deep learning, graph neural network, wind power, wind farm layout, numerical simulation

中图分类号: