电热气氢综合能源系统随机优化调度

邓钰龙, 李春燕, 邵常政, 张谦

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 522-529.

PDF(1724 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1724 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 522-529. DOI: 10.19912/j.0254-0096.tynxb.2022-1124

电热气氢综合能源系统随机优化调度

  • 邓钰龙, 李春燕, 邵常政, 张谦
作者信息 +

STOCHASTIC OPTIMAL SCHEDULING OF INTEGRATED ELECTRIC- HEAT-GAS-HYDROGEN ENERGY SYSTEM

  • Deng Yulong, Li Chunyan, Shao Changzheng, Zhang Qian
Author information +
文章历史 +

摘要

首先,分析电解槽以及燃料电池等设备工作特点,计及设备的动态能效,建立氢系统设备的精细化模型;其次,建立各种能源间的耦合关系模型,通过电热氢多种储能实现电热气氢系统的能量平衡;最后,计及电热气负荷的波动与可再生能源的不确定性,以日运行成本最小为目标,建立电热气氢综合能源系统随机优化调度模型。算例分析验证了该优化模型能有效消纳风光资源、降低日运行成本、减少环境污染,具有较好的经济性与环保性。

Abstract

Firstly, the working characteristics of electrolyzers and fuel cells have been analyzed. A refined model of the hydrogen system equipment is built considering the dynamic efficiency. Secondly, the coupling relationship model between energy sources is constructed, the energy balance of the integrated energy system is realized by introducing multiple energy storages. Finally, a stochastic optimal scheduling model of the integrated electric-heat-gas-hydrogen energy system is established considering the fluctuation of load and the uncertainty of renewable energy. Case studies verify that the proposed optimization model can effectively consume wind and photovoltaic energy, reduce operation cost and mitigate environmental pollution.

关键词

氢能 / 太阳能 / 综合能源系统 / 随机优化

Key words

hydrogen energy / solar energy / integrated energy system / stochastic programming

引用本文

导出引用
邓钰龙, 李春燕, 邵常政, 张谦. 电热气氢综合能源系统随机优化调度[J]. 太阳能学报. 2023, 44(11): 522-529 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1124
Deng Yulong, Li Chunyan, Shao Changzheng, Zhang Qian. STOCHASTIC OPTIMAL SCHEDULING OF INTEGRATED ELECTRIC- HEAT-GAS-HYDROGEN ENERGY SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 522-529 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1124
中图分类号: TM715   

参考文献

[1] 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38(6): 1517-1525.
HUANG D W, QI D Q, YU N, et al.Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta energiae solaris sinica, 2017, 38(6): 1517-1525.
[2] 董砚, 卢禹, 雷兆明, 等. 风电消纳下多台制氢机组优化调度研究[J]. 太阳能学报, 2021, 42(11): 299-306.
DONG Y, LU Y, LEI Z M, et al.Research on optimal scheduling of multiple hydrogen production units under wind power consumption[J]. Acta energiae solaris sinica, 2021, 42(11): 299-306.
[3] 周建力, 乌云娜, 董昊鑫, 等. 计及电动汽车随机充电的风-光-氢综合能源系统优化规划[J]. 电力系统自动化, 2021, 45(24): 30-40.
ZHOU J L, WU Y N, DONG H X, et al.Optimal planning of wind-photovoltaic-hydrogen integrated energy system considering random charging of electric vehicles[J]. Automation of electric power systems, 2021, 45(24): 30-40.
[4] 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022,42(17): 6155-6170.
GAO C W, WANG W, CHEN T.Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42(17): 6155-6170.
[5] 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
CHEN D Y, LIU F, LIU S.Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power system technology, 2022, 46(6): 2042-2054.
[6] 滕云, 孙鹏, 罗桓桓, 等. 计及电热混合储能的多源微网自治优化运行模型[J]. 中国电机工程学报, 2019, 39(18): 5316-5324, 5578.
TENG Y, SUN P, LUO H H, et al.Autonomous optimization operation model for multi-source microgrid considering electrothermal hybrid energy storage[J]. Proceedings of the CSEE, 2019, 39(18): 5316-5324, 5578.
[7] 魏繁荣. 基于负荷弹性的新能源发电柔性高效就地化消纳策略研究[D]. 武汉: 华中科技大学, 2018.
WEI F R.Studies on load resilience based flexible and effective locally-accommodating strategies of renewable energy generation[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[8] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[9] 赵有林, 邱晓燕, 赵长枢, 等. 考虑电转气精细化模型的气电联合微网日前优化调度[J]. 电气传动, 2021, 51(11): 68-74.
ZHAO Y L, QIU X Y, ZHAO C S, et al.Day ahead optimal scheduling of microgrid in gas-electricity combined system considering refined model of powe r to gas[J]. Electric drive, 2021, 51(11): 68-74.
[10] 朱兰, 王吉, 唐陇军, 等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术, 2019, 43(1): 116-126.
ZHU L, WANG J, TANG L J, et al.Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power system technology, 2019, 43(1): 116-126.
[11] CHAE M J, KIM J H, MOON B, et al.The present condition and outlook for hydrogen-natural gas blending technology[J]. Korean journal of chemical engineering, 2022, 39(2): 251-262.
[12] CORREA J M, FARRET F A, POPOV V A, et al.Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells[J]. IEEE transactions on energy conversion, 2005, 20(1): 211-218.
[13] HE Y H, WU G.PGM-Free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions, and promises[J]. Accounts of materials research, 2022, 3(2): 224-236.
[14] HUANG C, ZHANG H C, SONG Y H, et al.Demand response for industrial micro-grid considering photovoltaic power uncertainty and battery operational cost[J]. IEEE transactions on smart grid, 2021, 12(4): 3043-3055.
[15] 郑连华, 文中, 邱智武, 等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL]. 电测与仪表, 2022:1-9(2022-05-31). http://kns.cnki.net/kcms/detail/23.1202.TH. 20220530.1813.003.html
ZHENG L H, WEN Z, QIU Z W, et al. Low-carbon optimized operation of an integrated energy system that takes into account solar thermal power plants and hydrogen storage[J/OL]. Electrical measurement & instrumentation, 2022:1-9(2022-05-31). http://kns.cnki.net/kcms/detail/23.1202.TH. 20220530.1813.003.html
[16] 李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
LI T G, HU Z J, CHEN Z, et al.Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric power automation equipment, 2023,43(1): 16-24.

基金

国家自然科学基金(52177073)

PDF(1724 KB)

Accesses

Citation

Detail

段落导航
相关文章

/