分段除霜持续供热空气源热泵系统除霜性能研究

刘西安, 陈海, 冯荣杰, 黄韬, 何石泉, 唐兰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 1-8.

PDF(2255 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2255 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2022-1136

分段除霜持续供热空气源热泵系统除霜性能研究

  • 刘西安, 陈海, 冯荣杰, 黄韬, 何石泉, 唐兰
作者信息 +

DEFROST PERFORMANCE STUDY OF CONTINUOUS HEATING AIR SOURCE HEAT PUMP SYSTEM WITH SEGMENTED DEFROST

  • Liu Xi'an, Chen Hai, Feng Ronjie, Huang Tao, He Shiquan, Tang Lan
Author information +
文章历史 +

摘要

基于可持续供热空气源热泵热气旁通除霜技术,该文提出一种分段除霜持续供热空气源热泵系统,并在焓差实验室中对其进行性能研究。结果表明,环境温度或相对湿度降低,或冷凝温度升高均会使得分段除霜系统平均制热功率降低。分段除霜过程中的压缩机吸气压强变化幅度比逆循环除霜小698.5 kPa、排气压强变化幅度比逆循环除霜小238.9 kPa。自上而下的除霜顺序每段除霜用时依次增加,而自下而上的除霜顺序每段除霜用时基本相同,且自下而上的除霜顺序比自上而下的除霜顺序总除霜时间减少55 s,但会对“二次结霜”造成影响。与传统逆循环除霜系统相比,该分段除霜系统具有除霜时间短且可持续供热、COP高、对系统冲击较小等优点。但除霜期间由于阀门的切换,会引起系统局部压力波动和能量损失,有待进一步优化。

Abstract

Based on continuous heating air source heat pump hot gas bypass defrost technology, this study proposes a segmental defrosting continuous heating air source heat pump system and investigates its performance in an enthalpy difference lab. The results show that lower ambient temperature or lower relative humidity or higher condensing temperature will reduce the average heating capacity of the segmental defrosting system. The change of compressor suction pressure in the process of segmental defrosting is 698.5 kPa smaller than that of reverse cycle defrost, and the change of discharge pressure is 238.9 kPa smaller than that of reverse cycle defrost. The defrosting sequence from top to down takes more time for each coil, while the defrosting sequence from down to top takes basically the same time for each coil, top to down defrosting sequence reduces total defrosting time by 55 s compared to top to down defrosting sequence, but has an impact on“secondary frosting”. Compared with the traditional reverse cycle defrost system, the segmental defrosting system has the advantages of short defrosting time and continuous heating, high COP, and less impact on the system. The switching of valves during defrosting will cause some local pressure fluctuations and energy loss in this system, which needs to be further optimized.

关键词

空气源热泵 / 除霜 / 持续供热 / 性能研究 / 系统优化 / 不确定度分析

Key words

air source heat pump / defrost / continuous heating / performance study / system optimization / uncertainty analysis

引用本文

导出引用
刘西安, 陈海, 冯荣杰, 黄韬, 何石泉, 唐兰. 分段除霜持续供热空气源热泵系统除霜性能研究[J]. 太阳能学报. 2023, 44(11): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1136
Liu Xi'an, Chen Hai, Feng Ronjie, Huang Tao, He Shiquan, Tang Lan. DEFROST PERFORMANCE STUDY OF CONTINUOUS HEATING AIR SOURCE HEAT PUMP SYSTEM WITH SEGMENTED DEFROST[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1136
中图分类号: TK124   

参考文献

[1] 王沣浩, 马龙霞, 王志华, 等. 空气源热泵除霜控制方法研究现状及展望[J]. 制冷学报, 2021, 42(5): 27-35.
WANG F H, MA L X, WANG Z H, et al.Research status and prospect on defrosting control method of air source heat pump[J]. Journal of refrigeration, 2021, 42(5): 27-35.
[2] 宋孟杰, 毛宁, 雷尚文, 等. 空气源热泵逆循环除霜优化研究现状与发展趋势[J]. 东北电力大学学报, 2021, 41(2): 1-19.
SONG M J, MAO N, LEI S W, et al.Research status and trends on reverse cycle defrosting for air source heat pump units[J]. Journal of Northeast Electric Power University, 2021, 41(2): 1-19.
[3] 张杰, 兰菁, 杜瑞环, 等. 几种空气源热泵除霜方式的性能比较[J]. 制冷学报, 2012, 33(2): 47-49.
ZHANG J, LAN J, DU R H, et al.The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of refrigeration, 2012, 33(2): 47-49.
[4] LIANG C H, ZHANG X S, LI X W, et al.Control strategy and experimental study on a novel defrosting method for air-source heat pump[J]. Applied thermal engineering, 2010, 30(8/9): 892-899.
[5] CHO H H, KIM Y C, JANG I K.Performance of a showcase refrigeration system with multi-evaporator during on-off cycling and hot-gas bypass defrost[J]. Energy, 2005, 30(10): 1915-1930.
[6] KIM J H, CHOI H J, KIM K C.A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied energy, 2015, 147: 344-352.
[7] BYUN J S, LEE J H, JEON C D.Frost retardation of an air-source heat pump by the hot gas bypass method[J]. International journal of refrigeration, 2008, 31(2): 328-334.
[8] JANG J Y, BAE H H, LEE S J, et al.Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency[J]. Applied energy, 2013, 110: 9-16.
[9] MADER G, THYBO C.A new method of defrosting evaporator coils[J]. Applied thermal engineering, 2012, 39: 78-85.
[10] ZHANG L, DONG J K, JIANG Y Q, et al.A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump[J]. Applied energy, 2014, 133: 101-111.
[11] LIU Z B, FAN P Y, WANG Q H, et al.Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage[J]. Applied thermal engineering, 2018, 128: 1420-1429.
[12] NIU J H, MA G Y, XU S X.Experimental study on the performance of air source heat pump system with multiple parallel outdoor units[J]. International journal of energy research, 2020, 44(4): 2819-2832.
[13] YAJIMA T, OHKUBO H, SEKI M.Research on defrost free air-source heat pump with surface stripe concavo-convex fins[J]. Energy and buildings, 2021, 231: 110568.
[14] JIA X Y, MA G Y, ZHOU F, et al.Experimental study and operation optimization of a parallel-loop heat pump for exhaust air recovery in residential buildings[J]. Journal of building engineering, 2022, 45: 103468.
[15] DIAZ DE GARAYO S, MARTÍNEZ A, ASTRAIN D. Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling[J]. Applied energy, 2022, 309: 118443.
[16] HUANG D, LI Q X, YUAN X L.Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump[J]. Applied energy, 2009, 86(9): 1697-1703.
[17] HUANG D, YUAN X L, ZHANG X Q.Effects of fan-starting methods on the reverse-cycle defrost performance of an air-to-water heat pump[J]. International journal of refrigeration, 2004, 27(8): 869-875.
[18] YE Z L, WANG Y K, YIN X, et al.Comparison between reverse cycle and hot gas bypass defrosting methods in a transcritical CO2 heat pump water heater[J]. Applied thermal engineering, 2021, 196: 117356.

基金

广东省自然科学基金(2022A1515010700)

PDF(2255 KB)

Accesses

Citation

Detail

段落导航
相关文章

/