[1] 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018. HUANG Z, XIE X M.Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1010-1018. [2] 李十中. 推动新能源革命促进实现碳中和目标[J]. 人民论坛·学术前沿, 2021(14): 42-51. LI S Z.Promoting the new energy revolution and achieving the goal of carbon neutrality[J]. Frontiers, 2021(14): 42-51. [3] 金秋实, 王晓, 倪依琳, 等. “双碳”背景下光伏行业发展研究与展望[J]. 环境保护, 2022, 50(S1): 44-50. JIN Q S, WANG X, NI Y L, et al.Development research and outlook on photovoltaic industry under carbon peaking and carbon neutrality goals[J]. Environmental protection, 2022, 50(S1): 44-50. [4] ZHOU X P, YANG J K, YUAN X D, et al.Solar potential for the solar photovoltaic roof integration system in China explored by the geographic information system[J]. International journal of global energy issues, 2009, 31(1): 50. [5] 刘光旭, 吴文祥, 张绪教, 等. 屋顶可用太阳能资源评估研究: 以2000年江苏省数据为例[J]. 长江流域资源与环境, 2010, 19(11): 1242-1248. LIU G X, WU W X, ZHANG X J, et al.Study for evaluating roof-mounted available solar energy resource: case in Jiangsu Province according to its 2000 data[J]. Resources and environment in the Yangtze Basin, 2010, 19(11): 1242-1248. [6] SUN Y W, HOF A, WANG R, et al.GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province[J]. Energy policy, 2013, 58: 248-259. [7] 邱喜兰, 范宏武, 徐强, 等. 上海市分布式光伏发电发展规划研究[J]. 上海节能, 2014(10): 11-15. QIU X L, FAN H W, XU Q, et al.Study on the development planning of distributed photovoltaic power generation in Shanghai[J]. Shanghai energy conservation, 2014(10): 11-15. [8] 郭晓琳. 基于屋顶面积的徐州市屋顶太阳能光伏潜力评估[D]. 徐州: 中国矿业大学, 2015. GUO X L.Rooftop solar PV potential assessment of Xuzhou based on roof area[D]. Xuzhou: China University of Mining and Technology, 2015. [9] 张华. 城市建筑屋顶光伏利用潜力评估研究[D]. 天津: 天津大学, 2017. ZHANG H.Research on PV energy potential of rooftop in urban area[D]. Tianjin: Tianjin University, 2017. [10] 徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1): 47-59. XU H, ZHU Y H, ZHEN T, et al.Survey of image semantic segmentation methods based on deep neural network[J]. Journal of frontiers of computer science and technology, 2021, 15(1): 47-59. [11] 张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. ZHANG X, YAO Q A, ZHAO J, et al.Image semantic segmentation based on fully convolutional neural network[J]. Computer engineering and applications, 2022, 58(8): 45-57. [12] SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016: 640-651. [13] RONNEBERGER O, FISCHER P, BROX T.U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [14] 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法[J]. 测绘学报, 2022, 51(3): 457-467. HE Z M, DING H Y, AN B Q.E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images[J]. Acta geodaetica et cartographica sinica, 2022, 51(3): 457-467. [15] CHEN Z Y, LI D L, FAN W T, et al.Self-attention in reconstruction bias U-net for semantic segmentation of building rooftops in optical remote sensing images[J]. Remote sensing, 2021, 13(13): 2524. [16] 秦梦宇, 刘勇, 张寅丹, 等. 基于改进U-Net模型的高分辨率遥感影像中城市建筑物的提取[J]. 兰州大学学报(自然科学版), 2022, 58(2): 254-261, 269. QIN M Y, LIU Y, ZHANG Y D, et al.Extraction of urban buildings from high-resolution remote sensing images based on improved U-Net model[J]. Journal of Lanzhou University (natural sciences), 2022, 58(2): 254-261, 269. [17] DENG W J, SHI Q, LI J.Attention-gate-based encoder-decoder network for automatical building extraction[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2021, 14: 2611-2620. [18] ALSABHAN W, ALOTAIBY T.Automatic building extraction on satellite images using unet and ResNet50[J]. Computational intelligence and neuroscience, 2022, 2022: 5008854. [19] DELIBAŞOĞLU İ. INCSA-UNET: spatial attention inception UNET for aerial images segmentation[J]. Computing and informatics, 2021, 40(6): 1244-1262. [20] YE H R, LIU S, JIN K, et al.CT-UNet: an improved neural network based on U-net for building segmentation in remote sensing images[C]//2020 25th International Conference on Pattern Recognition (ICPR). Milan, Italy, 2021: 166-172. [21] SCHLEMPER J, OKTAY O, SCHAAP M, et al.Attention gated networks: learning to leverage salient regions in medical images[J]. Medical image analysis, 2019, 53: 197-207. [22] YU M Y, CHEN X X, ZHANG W Z, et al.AGs-unet: building extraction model for high resolution remote sensing images based on attention gates U network[J]. Sensors, 2022, 22(8): 2932. [23] SUN X Y, XIAO Y, JI Y F, et al.Multi scale UNet encoder-decoder network for building extraction[C]//2021 3rd International Conference on Information Technology and Computer Communications. Guangzhou, China, 2021. [24] FENG D J, XIE Y K, XIONG S F, et al.Regularized building boundary extraction from remote sensing imagery based on augment feature pyramid network and morphological constraint[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2021, 14: 12212-12223. [25] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4): 448-459. JI S P, WEI S Q.Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta geodaetica et cartographica sinica, 2019, 48(4): 448-459. [26] 于文玲, 刘波, 刘华, 等. 基于Attention Gates和R2U-Net的遥感影像建筑物提取方法[J]. 地理与地理信息科学, 2022, 38(3): 31-36, 42. YU W L, LIU B, LIU H, et al.Building extraction from remote sensing images based on the R2U-Net model and attention gates[J]. Geography and geo-information science, 2022, 38(3): 31-36, 42. [27] 李传林, 黄风华, 胡威, 等. 基于Res_AttentionUnet的高分辨率遥感影像建筑物提取方法[J]. 地球信息科学学报, 2021, 23(12): 2232-2243. LI C L, HUANG F H, HU W, et al.Building extraction from high-resolution remote sensing image based on Res_AttentionUnet[J]. Journal of geo-information science, 2021, 23(12): 2232-2243. [28] NIU Z Y, ZHONG G Q, YU H.A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. [29] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 7132-7141. [30] LI X, WANG W H, HU X L, et al.Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, 2020: 510-519. [31] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 936-944. [32] ZHAO B J, ZHAO B Y, TANG L B, et al.Multi-scale object detection by top-down and bottom-up feature pyramid network[J]. Journal of systems engineering and electronics, 2019, 30(1): 1-12. [33] 赵斐, 张文凯, 闫志远, 等. 基于多特征图金字塔融合深度网络的遥感图像语义分割[J]. 电子与信息学报, 2019, 41(10): 2525-2531. ZHAO F, ZHANG W K, YAN Z Y, et al.Multi-feature map pyramid fusion deep network for semantic segmentation on remote sensing data[J]. Journal of electronics & information technology, 2019, 41(10): 2525-2531. [34] 崔卫红, 熊宝玉, 张丽瑶. 多尺度全卷积神经网络建筑物提取[J]. 测绘学报, 2019, 48(5): 597-608. CUI W H, XIONG B Y, ZHANG L Y.Multi-scale fully convolutional neural network for building extraction[J]. Acta geodaetica et cartographica sinica, 2019, 48(5): 597-608. [35] TIAN Q L, ZHAO Y J, LI Y, et al.Multiscale building extraction with refined attention pyramid networks[J]. IEEE geoscience and remote sensing letters, 2022, 19: 1-5. [36] DONG X, LI F, BAI H, et al.Dual attention based image pyramid network for object detection[J]. KSII transactions on internet and information systems, 2021, 15(12): 4439-4455. |