Spar型漂浮式风力机断缆影响及运动稳定性研究

李东升, 涂靖, 李炜

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 331-340.

PDF(2303 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2303 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 331-340. DOI: 10.19912/j.0254-0096.tynxb.2022-1168

Spar型漂浮式风力机断缆影响及运动稳定性研究

  • 李东升1, 涂靖1, 李炜2
作者信息 +

STUDY ON MOORING BREAKAGE EFFECTS AND MOTION STABILITY OF SPAR-TYPE FLOATING OFFSHORE WIND TURBINE

  • Li Dongsheng1, Tu Jing1, Li Wei2
Author information +
文章历史 +

摘要

为探究系泊断裂对漂浮式风力机造成的影响,建立基于Spar平台的漂浮式风力机多刚体动力学模型,研究在正常运行工况以及风浪存在不同夹角工况下系泊断裂对其动力响应的影响,通过考虑漂浮式风力机断缆前后的运动稳定域探讨两种风电场布置的可行性。结果表明:漂浮式风力机的纵荡与横荡运动受系泊断裂的影响较大,且位于荷载方向两侧的系泊相比其他系泊在发生断裂后对风力机运动响应的影响更大;对于风浪夹角工况,30°以下的风浪夹角不会增大系泊断裂给漂浮式风力机带来的不利影响;对于采用共享锚链锚固点的风电场布置而言,星形布置方式存在相邻风力机碰撞的风险,宜采用安全距离较大的六边形布置。

Abstract

To investigate the effect of mooring breakage on floating wind turbines(FOWT), a multi-body dynamics model based on Spar platform is developed to study the effect of mooring breakage on the dynamic response of FOWT under operating conditions and misaligned wind and wave conditions, and the feasibility of two wind farm arrangements are discussed by considering the motion stability field before and after the breakage of mooring. The results show that: the surge and sway of FOWT is more affected by the mooring breakage, and the mooring lines located on both sides of the load direction have more influence on the wind turbine motion response after the breakage than the moorings at other locations; for the misaligned wind and wave conditions, the angle of wind and wave below 30° does not increase the adverse effect of the mooring breakage on the FOWT; for wind farms with shared anchors, the star-shaped arrangement has the risk of collision with neighboring turbines, and it is appropriate to adopt the hexagonal arrangement with larger safety distance.

关键词

风能 / 漂浮式风力机 / 动力响应 / 系泊断裂 / 时域仿真 / 漂移运动 / 稳定性

Key words

wind power / offshore wind turbines / dynamic response / fractured mooring lines / time-domain simulation / drift motion / stability

引用本文

导出引用
李东升, 涂靖, 李炜. Spar型漂浮式风力机断缆影响及运动稳定性研究[J]. 太阳能学报. 2023, 44(11): 331-340 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1168
Li Dongsheng, Tu Jing, Li Wei. STUDY ON MOORING BREAKAGE EFFECTS AND MOTION STABILITY OF SPAR-TYPE FLOATING OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 331-340 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1168
中图分类号: TK83   

参考文献

[1] SIDDIQUI N A, AHMAD S.Fatigue and fracture reliability of TLP tethers under random loading[J]. Marine structures, 2001, 14(3): 331-352.
[2] BAE Y H, KIM M H, KIM H C.Performance changes of a floating offshore wind turbine with broken mooring line[J]. Renewable energy, 2017, 101: 364-375.
[3] ZHANG C L, WANG S M, XIE S Y, et al.Effects of mooring line failure on the dynamic responses of a semisubmersible floating offshore wind turbine including gearbox dynamics analysis[J]. Ocean engineering, 2022, 245: 110478.
[4] LI Y, ZHU Q, LIU L Q, et al.Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines[J]. Renewable energy, 2018, 122: 576-588.
[5] WU H Y, ZHAO Y S, HE Y P, et al.Transient response of a TLP-type floating offshore wind turbine under tendon failure conditions[J]. Ocean engineering, 2021, 220: 108486.
[6] JONKMAN J.Definition of the floating system for phase IV of OC3[R]. NREL, Goden, CO, USA, 2010: 509-513.
[7] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009(2): 1-75.
[8] 洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999.
HONG J Z.Computational dynamics of multibody systems[M]. Beijing: Higher Education Press, 1999.
[9] WANG L, SWEETMAN B.Simulation of large-amplitude motion of floating wind turbines using conservation of momentum[J]. Ocean engineering, 2012, 42: 155-164.
[10] NIELSEN F G, HANSON T D, SKAARE B.Integrated dynamic analysis of floating offshore wind turbines[C]//Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2008: 671-679.
[11] 中国船级社. 海上移动平台入级规范[M]. 北京: 人民交通出版社, 2016.
China Classification Society.Rules for construction and classification of mobile offshore drilling units[M]. Beijing: China Communications Press, 2016.
[12] 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.
WANG S Q, LIANG B C.Wave mechanics for ocean engineering[M]. Qingdao: China Ocean University Press, 2013.
[13] 滕斌, 郝春玲, 韩凌. Chebyshev多项式在锚链分析中的应用[J]. 中国工程科学, 2005, 7(1): 21-26.
TENG B, HAO C L, HAN L.Numerical simulation of static behavior of the single anchor cable[J]. Engineering science, 2005, 7(1): 21-26.
[14] 郑崇伟, 周林. 近10年南海波候特征分析及波浪能研究[J]. 太阳能学报, 2012, 33(8): 1349-1356.
ZHENG C W, ZHOU L.Wave climate and wave energy analysis of the South China Sea in recent 10 years[J]. Acta energiae solaris sinica, 2012, 33(8): 1349-1356.
[15] FISCHER T, RAINEY P, BOSSANYI E, et al.Study on control concepts suitable for mitigation of loads from misaligned wind and waves on offshore wind turbines supported on monopiles[J]. Wind engineering, 2011, 35(5): 561-573.
[16] ZAMBRANO T, MACCREADY T, KICENIUK T, et al.Dynamic modeling of deepwater offshore wind turbine structures in gulf of Mexico storm conditions[C]//Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2008: 629-634.
[17] TONG K C. Technical and economic aspects of a floating offshore wind farm[J]. Journal of wind engineering and industrial aerodynamics, 1998, 74/75/76: 399-410.

基金

国家自然科学基金(51778103); 广东省自然科学基金(2021A1515011770)

PDF(2303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/