纳米ZnO/三元氯化物熔盐热物性及腐蚀特性实验研究

季畅, 姜文超, 杨薛明

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 426-433.

PDF(2699 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2699 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 426-433. DOI: 10.19912/j.0254-0096.tynxb.2022-1171

纳米ZnO/三元氯化物熔盐热物性及腐蚀特性实验研究

  • 季畅, 姜文超, 杨薛明
作者信息 +

EXPERIMENTAL STUDY ON THERMAL PROPERTIES AND CORROSION PROPERTIES OF NANO-ZNO/TERNARY CHLORIDE MOLTEN SALT

  • Ji Chang, Jiang Wenchao, Yang Xueming
Author information +
文章历史 +

摘要

以KCl-CaCl2-MgCl2三元氯化物熔盐(m(KCl)∶m(CaCl2)∶m(MgCl2)=25∶27∶48)为基盐,添加不同粒径及质量分数的纳米ZnO颗粒制备纳米ZnO/三元氯化物熔盐,对其热物性和腐蚀特性进行测试。差示扫描热仪(DSC)测试结果表明,1.0%、60 nm ZnO/三元氯化物熔盐的比热容相对于基盐提升效果最大,固态比热容提升18.87%,液态比热容提升18.98%;纳米ZnO/三元氯化物熔盐的熔点相对于基盐有所降低,熔化潜热有所提升。通过傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)和扫描电镜(SEM)对纳米ZnO/三元氯化物熔盐的晶体结构和微观形貌进行测试表征。测试基盐和纳米ZnO/三元氯化物熔盐对3种不锈钢的腐蚀特性。

Abstract

In the paper, KCl-CaCl2-MgCl2 ternary chloride molten salt (m(KCl)∶m(CaCl2)∶m(MgCl2)=25∶27∶48)) is used as the base salt, nano-ZnO particles with different particle sizes and mass fractions were added to prepare nano-ZnO/ternary chloride molten salt, and its thermal properties and corrosion characteristics were tested. The DSC test results show that addition of 1.0% 60 nm-ZnO has the greatest enhancement on the specific heat capacity of ternary chloride molten salt; The solid specific heat capacity is increased by 18.87%, and the liquid specific heat capacity is increased by 18.98% compared with the base salt; The melting point of nano-ZnO/ternary chloride molten salt is lower than that of base salt, and the latent heat of melting is increased; The crystal structure and micromorphology of nano-ZnO/ternary chloride molten salt were characterized by FT-IR, XRD and SEM. The corrosion characteristics of base salt and nano-ZnO/ternary chloride molten salt on three kinds of stainless steel were tested.

关键词

太阳能热发电 / 熔融盐 / 纳米粒子 / 比热容 / 腐蚀

Key words

solar thermal power generation / molten salt / nanoparticles / specific heat capacity / corrosion

引用本文

导出引用
季畅, 姜文超, 杨薛明. 纳米ZnO/三元氯化物熔盐热物性及腐蚀特性实验研究[J]. 太阳能学报. 2023, 44(11): 426-433 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1171
Ji Chang, Jiang Wenchao, Yang Xueming. EXPERIMENTAL STUDY ON THERMAL PROPERTIES AND CORROSION PROPERTIES OF NANO-ZNO/TERNARY CHLORIDE MOLTEN SALT[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 426-433 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1171
中图分类号: TK512+.4   

参考文献

[1] 顾煜炯, 耿直, 张晨, 等. 聚光太阳能热发电系统关键技术研究综述[J]. 热力发电, 2017, 46(6): 6-13.
GU Y J, GENG Z, ZHANG C, et al.Review on key technologies of concentrating solar thermal power generation systems[J]. Thermal power generation, 2017, 46(6): 6-13.
[2] ACHKARI O, EL FADAR A.Latest developments on TES and CSP technologies—energy and environmental issues, applications and research trends[J]. Applied thermal engineering, 2020, 167: 114806.
[3] EL FAR B, RIZVI S M M, NAYFEH Y, et al. Study of viscosity and heat capacity characteristics of molten salt nanofluids for thermal energy storage[J]. Solar energy materials and solar cells, 2020, 210: 110503.
[4] VIGNAROOBAN K, XU X H, ARVAY A, et al.Heat transfer fluids for concentrating solar power systems—a review[J]. Applied energy, 2015, 146: 383-396.
[5] 李昭, 李宝让, 崔柳, 等. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6): 1775-1783.
LI Z, LI B R, CUI L, et al.Stability of the thermal performances of molten salt-based nanofluid[J]. Energy storage science and technology, 2020, 9(6): 1775-1783.
[6] LADKANY S, CULBRETH W, LOYD N.Molten salts and applications I: molten salt history, types, thermodynamic and physical properties, and cost[J]. Journal of energy and power engineering, 2018, 12(11): 507-516.
[7] 李昭, 文卜, 陈豪志, 等. 高温熔融盐基纳米流体的研究现状及进展[J]. 中国电机工程学报, 2021, 41(6): 2168-2187.
LI Z, WEN B, CHEN H Z, et al.State-of-the-art review on high temperature molten salt based nanofluids[J]. Proceedings of the CSEE, 2021, 41(6): 2168-2187.
[8] GILBERT R, PACHECO J.Overview of recent results of the solar two test and evaluations program[M]. New Mexico: Sandia National Laboratories, 1999.
[9] 龙兵, 魏小兰, 丁静, 等. 三元硝酸熔盐高温劣化的化学热力学计算[J]. 太阳能学报, 2011, 32(2): 252-256.
LONG B, WEI X L, DING J, et al.Calculation of chemical thermodynamics on deterioration of ternary nitrate salts at high temperature[J]. Acta energiae solaris sinica, 2011, 32(2): 252-256.
[10] AVAILABLE N.Concentrating solar power program review 2013(Book)[M]. Colorado:National Renewable Energy Laboratory, 2013.
[11] MYERS P D, GOSWAMI D Y.Thermal energy storage using chloride salts and their eutectics[J]. Applied thermal engineering, 2016, 109: 889-900.
[12] 宋明, 魏小兰, 彭强, 等. 新型三元氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396.
SONG M, WEI X L, PENG Q, et al.Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of engineering thermophysics, 2015, 36(2): 393-396.
[13] MUÑOZ-SÁNCHEZ B, NIETO-MAESTRE J, IPARRAGUIRRE-TORRES I, et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. an overview of the literature[J]. Renewable and sustainable energy reviews, 2018, 82: 3924-3945.
[14] ZHANG X P, LU Y W, YU Q, et al.Study on preparation and thermophysical characteristics of molten salt nanocomposite by microwave method[J]. Solar energy materials and solar cells, 2021, 220: 110846.
[15] HAN D M, GUENE LOUGOU B, XU Y T, et al.Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied energy, 2020, 264: 114674.
[16] SHIN D, BANERJEE D.Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of heat transfer, 2013, 135(3): 032801.
[17] SHIN D, BANERJEE D.Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International journal of heat and mass transfer, 2014, 74: 210-214.
[18] ZHANG Z L, YUAN Y P, OUYANG L P, et al.Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems[J]. Journal of thermal analysis and calorimetry, 2017, 128(3): 1783-1792.
[19] VIGNAROOBAN K, XU X H, ARVAY A, et al.Heat transfer fluids for concentrating solar power systems-a review[J]. Applied energy, 2015, 146: 383-396.
[20] AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al.Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review[J]. Journal of molecular liquids, 2020, 314: 113807.
[21] 鹿院卫, 李勇, 吴玉庭, 等. 低熔点混合熔融盐腐蚀性研究[J]. 太阳能学报, 2018, 39(3): 692-696.
LU Y W, LI Y, WU Y T, et al.Research on corrosive property of low molting point mixed molten salt[J]. Acta energiae solaris sinica, 2018, 39(3): 692-696.
[22] GROSU Y, ANAGNOSTOPOULOS A, BALAKIN B, et al.Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: thermophysical properties, stability, compatibility and life cycle analysis[J]. Solar energy materials and solar cells, 2021, 220: 110838.
[23] 魏小兰, 谢佩, 王维龙, 等. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021, 72(6): 3074-3083.
WEI X L, XIE P, WANG W L, et al.Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium[J]. CIESC journal, 2021, 72(6): 3074-3083.
[24] GABER G A, MOHAMED L Z, JÄRVENPÄÄ A, et al. Enhancement of corrosion protection of AISI 201 austenitic stainless steel in acidic chloride solutions by Ce-doped TiO2 coating[J]. Surface and coatings technology, 2021, 423: 127618.
[25] VIGNAROOBAN K, XU X H, WANG K, et al.Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied energy, 2015, 159: 206-213.
[26] BELL S, JONES M W M, GRAHAM E, et al. Corrosion mechanism of SS316L exposed to NaCl/Na2CO3 molten salt in air and argon environments[J]. Corrosion science, 2022, 195: 109966.
[27] SHIN D, BANERJEE D.Enhanced specific heat of silica nanofluid[J]. Journal of heat transfer, 2011, 133(2): 1.
[28] RIZVI S M M, SHIN D. Mechanism of heat capacity enhancement in molten salt nanofluids[J]. International journal of heat and mass transfer, 2020, 161: 120260.
[29] CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al.Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale research letters, 2013, 8(1): 1-9.
[30] AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al.Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HITEC molten salt for concentrated solar power applications[J]. International communications in heat and mass transfer, 2022, 132: 105898.

基金

国家自然科学基金(52076080); 河北省自然科学基金(E2019502138)

PDF(2699 KB)

Accesses

Citation

Detail

段落导航
相关文章

/