高频隔离型双向直流变换器是级联电池储能系统的关键部件,应当满足宽电压增益范围、高工作效率的要求。在级联电池储能系统中,针对双有源桥(dual active bridge,DAB)变换器在宽增益范围下由于回流功率及开关时刻大电流导致效率降低的问题,在三移相(TPS)调制策略的基础上,提出一种以总损耗为优化目标,基于内点法的优化调制策略。构建了DAB在不同增益下统一的损耗模型,在保证开关管软开通(ZVS)的基础上,根据不同的电池输出电压(OCV),利用内点法得到移相角的最优值。分析电感值与开关频率对整个电压增益范围平均效率的影响,为电路参数设计提供参考。同时,构建5 kW小功率实验平台,验证了优化调制策略的有效性。
Abstract
The high-frequency isolated bidirectional DC-DC converter is a key component of cascaded battery energy storage system, which should meet the requirements of wide voltage gain range and high efficiency.In the cascade battery energy storage system, aiming at the problem of efficiency reduction of dual active bridge (DAB) under wide gain range due to backflow power and high current at switching time, on the basis of three phase shift (TPS) modulation strategy, an optimized modulation strategy based on interior point method is proposed, which takes the total loss as the optimization objective. The proposed strategy constructs a unified loss model of DAB under different gains. On the basis of ensuring the soft switching (ZVS) of the switching devices, the interior point method is used to obtain the optimal value of phase shift angle according to different battery open circuit voltage (OCV). The influence of inductance value and switching frequency on the average efficiency of the whole voltage gain range is analyzed, which provides a reference for DAB parameter design. A 5 kW low-power experimental platform was constructed to verify the effectiveness of the optimized modulation strategy.
关键词
光伏电站 /
电池储能系统 /
直流变换器 /
调制策略优化 /
电路参数优化
Key words
PV power station /
battery energy storage system /
DC-DC converters /
modulation strategy optimization /
circuit parameters optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 卢斯煜, 周保荣, 饶宏, 等. 高比例光伏发电并网条件下中国远景电源结构探讨[J]. 中国电机工程学报, 2018, 38(S1): 39-44.
LU S Y, ZHOU B R, RAO H, et al.Research of the prospect of China power generation structure with high proportion of photovoltaic generation[J]. Proceedings of the CSEE, 2018, 38(S1): 39-44.
[2] 杨佳涛, 吴西奇, 李睿, 等. 中压直挂光伏发电系统模块间电压-功率自主跟踪控制方法研究[J]. 中国电机工程学报, 2021, 41(8): 2815-2825.
YANG J T, WU X Q, LI R, et al.Research on submodules voltage-power self-tracking control method for medium-voltage direct-linked photovoltaic power generation system[J]. Proceedings of the CSEE, 2021, 41(8): 2815-2825.
[3] SOCHOR P, AKAGI H.Theoretical comparison in energy-balancing capability between star-and delta-configured modular multilevel cascade inverters for utility-scale photovoltaic systems[J]. IEEE transactions on power electronics, 2016, 31(3): 1980-1992.
[4] ROJAS C A, KOURO S, PEREZ M A, et al.DC-DC MMC for HVDC grid interface of utility-scale photovoltaic conversion systems[J]. IEEE transactions on industrial electronics, 2018, 65(1): 352-362.
[5] 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25, 102.
DING M, CHEN Z, SU J H, et al.An overview of battery energy storage system for renewable energy generation[J]. Automation of electric power systems, 2013, 37(1): 19-25, 102.
[6] 赵彪, 安峰, 宋强, 等. 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41(1): 288-298, 418.
ZHAO B, AN F, SONG Q, et al.Development and application of DC transformer based on dual-active-bridge[J]. Proceedings of the CSEE, 2021, 41(1): 288-298, 418.
[7] 闫士杰, 沈千翔, 李相俊. 大功率模块化储能系统SOC优化均衡控制[J]. 电网技术, 2021, 45(1): 49-56.
YAN S J, SHEN Q X, LI X J.Optimized SOC balancing control for high power modular energy storage system[J]. Power system technology, 2021, 45(1): 49-56.
[8] 吴俊娟, 孟德越, 申彦峰, 等. 双重移相控制与传统移相控制相结合的双有源桥式DC-DC变换器优化控制策略[J]. 电工技术学报, 2016, 31(19): 97-105.
WU J J, MENG D Y, SHEN Y F, et al.Optimal control strategy of dual active bridge DC-DC converter with combined dual-phase-shift and traditional-phase-shift controls[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 97-105.
[9] 李婧, 袁立强, 谷庆, 等. 一种基于损耗模型的双有源桥DC-DC变换器效率优化方法[J]. 电工技术学报, 2017, 32(14): 66-76.
LI J, YUAN L Q, GU Q, et al.An efficiency optimization method in dual active bridge DC-DC converter based on loss model[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 66-76.
[10] 郭华越, 张兴, 赵文广, 等. 扩展移相控制的双有源桥DC-DC变换器的优化控制策略[J]. 中国电机工程学报, 2019, 39(13): 3889-3899.
GUO H Y, ZHANG X, ZHAO W G, et al.Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control[J]. Proceedings of the CSEE, 2019, 39(13): 3889-3899.
[11] 李彦君, 张兴, 赵文广, 等. 基于拓展移相调制的双有源桥回流功率优化策略[J]. 太阳能学报, 2022, 43(3): 216-222.
LI Y J, ZHANG X, ZHAO W G, et al.Optimized strategy of dual active bridge reflux power based on extended phase shift modulation[J]. Acta energiae solaris sinica, 2022, 43(3): 216-222.
[12] 费跃, 李若愚, 雷园, 等. 宽输入电压双有源桥变换器电流有效值最小控制方法研究[J]. 中国电机工程学报, 2019, 39(19): 5656-5665, 5893.
FEI Y, LI R Y, LEI Y, et al.Minimize RMS current method of wide input voltage dual active bridge converter[J]. Proceedings of the CSEE, 2019, 39(19): 5656-5665, 5893.
[13] 李哲. 纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学, 2011.
LI Z.Characterization research of LiFeO4 Batteries for application on pure electric vehicles[D]. Beijing: Tsinghua University, 2011.
[14] HUANG J J, ZHANG X, SHUAI Z K, et al.Robust circuit parameters design for the CLLC-type DC transformer in the hybrid AC-DC microgrid[J]. IEEE transactions on industrial electronics, 2019, 66(3): 1906-1918.
[15] JAIN A K, AYYANAR R.PWM control of dual active bridge: comprehensive analysis and experimental verification[C]//2008 34th Annual Conference of IEEE Industrial Electronics. Orlando, FL, USA, 2009: 909-915.
基金
上海市优秀学术/技术带头人计划(20XD1430700)