短期风电功率预测误差及出力波动的概率建模

马伟, 谢丽蓉, 马兰, 叶家豪, 卞一帆, 杨永辉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 361-366.

PDF(2534 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2534 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 361-366. DOI: 10.19912/j.0254-0096.tynxb.2022-1183

短期风电功率预测误差及出力波动的概率建模

  • 马伟1,2, 谢丽蓉1, 马兰1, 叶家豪1, 卞一帆1, 杨永辉1,2
作者信息 +

PROBABILISTIC MODELING OF SHORT-TERM WIND POWER PREDICTION ERRORS AND OUTPUT FLUCTUATIONS

  • Ma Wei1,2, Xie Lirong1, Ma Lan1, Ye Jiahao1, Bian Yifan1, Yang Yonghui1,2
Author information +
文章历史 +

摘要

准确刻画短期风电功率预测误差以及区域风电出力波动特征是解决大规模不确定性能源并网运行难题的基础。为准确表征风电出力波动与预测误差及气象误差的关联关系,建立高斯混合分布概率模型及利用其与观测曲线的误差构造云模型,然后建立基于正态云与混合高斯分布耦合的概率分布模型,最后采用多种概率密度分布模型对冀北地区单风电场功率预测误差、集群风电功率预测误差、气象预测误差以及不同功率波动范围的预测误差和与其对应的气象预测误差的关联关系进行统计分析。算例结果表明,所提模型拟合效果最优,从而验证了基于正态云与混合高斯分布耦合的概率模型的有效性。

Abstract

Accurately depict the short-term wind power prediction error and the characteristics of regional wind power output fluctuation is solved, the basis of large-scale parallel operation problem of uncertainty in energy for accurate characterization of wind power output fluctuation and the prediction error and the error of meteorological correlation, Gaussian mixture distribution probability model is set up and use the cloud model and the error of the observation curve structures, Then based on the coupling of the normal cloud and mixture Gaussian distribution probability distribution model, finally using a variety of probability density distribution model of single wind power prediction error, the cluster wind power prediction errors, the region's weather errors as well as different power range of northern Hebei Province weather prediction error of the prediction error and the corresponding statistical analysis of correlation. The simulation results show that the proposed model has the best fitting effect, which verifies the effectiveness of the probabilistic model based on the coupling of normal cloud and mixed Gaussian distribution.

关键词

风电 / 云模型 / 混合高斯分布 / 逆向云模型 / 概率密度分布

Key words

wind power / cloud model / mixed Gaussian distribution / reverse cloud model / probability density distribution

引用本文

导出引用
马伟, 谢丽蓉, 马兰, 叶家豪, 卞一帆, 杨永辉. 短期风电功率预测误差及出力波动的概率建模[J]. 太阳能学报. 2023, 44(11): 361-366 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1183
Ma Wei, Xie Lirong, Ma Lan, Ye Jiahao, Bian Yifan, Yang Yonghui. PROBABILISTIC MODELING OF SHORT-TERM WIND POWER PREDICTION ERRORS AND OUTPUT FLUCTUATIONS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 361-366 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1183
中图分类号: TK513.5   

参考文献

[1] 国家发展和改革委员会. 中国2050高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展和改革委员会能源研究所,2015.
Energy Research Institute of National Development and Reform Commission. Research on the scenario and roadmap of high proportion renewable energy development in China 2050[R]. Beijing: Energy Research Institute of National Development and Reform Commission, 2015.
[2] 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16): 3-16.
LU Z X, LIN Y S, QIAO Y, et al.Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of electric power systems, 2022, 46(16): 3-16.
[3] 乔颖, 鲁宗相, 吴问足. 考虑误差时序-条件性质的短期风电功率概率预测[J]. 电网技术, 2020, 44(7): 2529-2537.
QIAO Y, LU Z X, WU W Z.Day-ahead wind power probabilistic forecast considering conditional dependency and temporal correlation[J]. Power system technology, 2020, 44(7): 2529-2537.
[4] 刘永前, 史洁, 杨勇平, 等. 基于预测误差分布特性的风电场短期功率预测不确定性研究[J]. 太阳能学报, 2012, 33(12): 2179-2184.
LIU Y Q, SHI J, YANG Y P, et al.Uncertainty analysis of short term wind power forecasting based on error characteristics statistics[J]. Acta energiae solaris sinica, 2012, 33(12): 2179-2184.
[5] 杨锡运, 刘雅欣, 邢国通, 等. 基于风电概率预测的风电场调频容量估计方法[J]. 太阳能学报, 2022, 43(7): 409-416.
YANG X Y, LIU Y X, XING G T, et al.Method of estimating frequency regulation capacity of wind farm based on wind power probability prediction[J]. Acta energiae solaris sinica, 2022, 43(7): 409-416.
[6] 刘明宇, 姚芳, 李志刚, 等. 风电机组功率模型参数辨识及风资源利用率评估[J]. 太阳能学报, 2020, 41(12): 305-315.
LIU M Y, YAO F, LI Z G, et al.Power model parameter identification and wind resource utilization evaluation of wind turbine[J]. Acta energiae solaris sinica, 2020, 41(12): 305-315.
[7] 王一妹, 刘辉, 宋鹏, 等. 基于高斯混合模型聚类的风电场短期功率预测方法[J]. 电力系统自动化, 2021, 45(7): 37-43.
WANG Y M, LIU H, SONG P, et al.Short-term power forecasting method of wind farm based on Gaussian mixture model clustering[J]. Automation of electric power systems, 2021, 45(7): 37-43.
[8] 张金环, 王超群, 张彤, 等. 基于高斯混合分布模型的风电功率预测误差统计分析研究[J]. 智慧电力, 2020, 48(7): 59-64, 72.
ZHANG J H, WANG C Q, ZHANG T, et al.Statistical analysis of wind power forecasting errors based on Gaussian mixture model[J]. Smart power, 2020, 48(7): 59-64, 72.
[9] 杨茂, 董骏城. 基于混合分布模型的风电功率波动特性研究[J]. 中国电机工程学报, 2016, 36(S1): 69-78.
YANG M, DONG J C.Study on characteristics of wind power fluctuation based on mixed distribution model[J]. Proceedings of the CSEE, 2016, 36(S1): 69-78.
[10] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34.
LI D Y, LIU C Y.Study on the universality of the normal cloud model[J]. Engineering science, 2004, 6(8): 28-34.
[11] 刘华新, 苑一鸣, 周沛, 等. 基于融合理论的风电机组状态评价正态云模型[J]. 太阳能学报, 2018, 39(10): 2891-2900.
LIU H X, YUAN Y M, ZHOU P, et al.Normal cloud model for condition evaluation of wind turbines based on fusion theory[J]. Acta energiae solaris sinica, 2018, 39(10): 2891-2900.
[12] 张铸, 张仕杰, 饶盛华, 等. 改进樽海鞘群算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2022, 26(8): 139-146.
ZHANG Z, ZHANG S J, RAO S H, et al.Multi-parameter identification of permanent magnet synchronous motor based on improved salp swarm algorithm[J]. Electric machines and control, 2022, 26(8): 139-146.
[13] 张铸, 饶盛华, 张仕杰. 基于自适应正态云模型的灰狼优化算法[J]. 控制与决策, 2021, 36(10): 2562-2568.
ZHANG Z, RAO S H, ZHANG S J.Grey wolf optimization algorithm based on adaptive normal cloud model[J]. Control and decision, 2021, 36(10): 2562-2568.
[14] 杨洁, 王国胤, 刘群, 等. 正态云模型研究回顾与展望[J]. 计算机学报, 2018, 41(3): 724-744.
YANG J, WANG G Y, LIU Q, et al.Retrospect and prospect of research of normal cloud model[J]. Chinese journal of computers, 2018, 41(3): 724-744.
[15] 陈绍南, 陈碧云, 韦化, 等. 不规则风速概率分布的混合半云建模方法[J]. 中国电机工程学报, 2015, 35(6): 1314-1321.
CHEN S N, CHEN B Y, WEI H, et al.Mixed half-cloud modeling method for irregular probability distribution of wind speed[J]. Proceedings of the CSEE, 2015, 35(6): 1314-1321.
[16] ZHENG H B, HUANG W F, ZHAO J H, et al.A novel falling model for wind speed probability distribution of wind farms[J]. Renewable energy, 2022, 184: 91-99.
[17] 张美霞, 李丽, 杨秀, 等. 基于高斯混合模型聚类和多维尺度分析的负荷分类方法[J]. 电网技术, 2020, 44(11): 4283-4296.
ZHANG M X, LI L, YANG X, et al.A load classification method based on Gaussian mixture model clustering and multi-dimensional scaling analysis[J]. Power system technology, 2020, 44(11): 4283-4296.
[18] 王尤嘉, 鲁宗相, 乔颖, 等. 基于特征聚类的区域风电短期功率统计升尺度预测[J]. 电网技术, 2017, 41(5): 1383-1389.
WANG Y J, LU Z X, QIAO Y, et al.Short-term regional wind power statistical upscaling forecasting based on feature clustering[J]. Power system technology, 2017, 41(5): 1383-1389.

基金

国家自然科学基金(62163034)

PDF(2534 KB)

Accesses

Citation

Detail

段落导航
相关文章

/