一种缩小CCHP系统优化调度解空间的方法

周文操, 张学军, 闫来清

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 556-564.

PDF(1861 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1861 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 556-564. DOI: 10.19912/j.0254-0096.tynxb.2022-1197

一种缩小CCHP系统优化调度解空间的方法

  • 周文操, 张学军, 闫来清
作者信息 +

AN OPTIMAL SCHEDULING SCHEME OF CCHP SYSTEMS BY REDUCING SOLUTION SPACE

  • Zhou Wencao, Zhang Xuejun, Yan Laiqing
Author information +
文章历史 +

摘要

在冷热电联供(CCHP)系统中以生物质作为燃气发电的燃料,建立同时考虑光伏、风电消纳、储能电池寿命、CO2排放与电网能量交互及各产能设备间不同能量形式的转换关系等因素的CCHP系统多目标日运行调度模型,针对混合热电(FHL)运行模式解空间偏大的问题,提出通过剔除明显不经济、不环保、不可能的运行工况来缩小每时段解空间的方法,提高了计算效率和获得全局最优解的可能性。在此基础上,采用改进权重的变学习因子粒子群算法求出算例系统的调度方案,结果表明,该文所提方法不仅缩短了FHL运行模式的求解时间,还能使该运行模式获得更好的经济和环境收益。

Abstract

Based on combined cooling heating and power (CCHP) system that uses biomass as a fuel for gas-fired power generation, an optimal scheduling model for the CCHP system multi-objective daily operation is established, which also deals with factors such as PV, wind power consumption, energy storage battery life, CO2 emissions, energy interaction with the grid and the conversion relationship among different forms of energy of capacity devices. Aiming at the problem of large operating mode solution space of following hybrid load (FHL), this paper presents a new scheme to reduce the solution space per period by eliminating obviously uneconomic, environmentally unfriendly and impossible operating conditions, and thus the computational efficiency and the possibility of obtaining the globally optimal solution can be improved. On this basis, the scheduling scheme of the arithmetic case system is derived using particle swarm optimization by changing the learning factor with improved weights. The method proposed in this paper not only shortens the solution time of the FHL operation mode, but also leads to better economic and environmental benefits of this operation mode.

关键词

冷热电联供系统 / 多目标优化 / 能量利用 / 粒子群算法 / 调度优化

Key words

CCHP / multi-objective optimization / energy utilization / particle swarm optimization / scheduling optimization

引用本文

导出引用
周文操, 张学军, 闫来清. 一种缩小CCHP系统优化调度解空间的方法[J]. 太阳能学报. 2023, 44(11): 556-564 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1197
Zhou Wencao, Zhang Xuejun, Yan Laiqing. AN OPTIMAL SCHEDULING SCHEME OF CCHP SYSTEMS BY REDUCING SOLUTION SPACE[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 556-564 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1197
中图分类号: TK513.5   

参考文献

[1] GHERSI D E, AMOURA M, LOUBAR K, et al.Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy[J]. Energy, 2021, 219: 119574.
[2] WU D W, WANG R Z.Combined cooling, heating and power: a review[J]. Progress in energy and combustion science, 2006, 32(5/6): 459-495.
[3] 萨妮耶·麦合木提, 王海云, 王维庆, 等. 基于可再生能源的CCHP系统综合性能研究[J]. 太阳能学报, 2020, 41(8): 129-136.
SANIYE M, WANG H Y, WANG W Q, et al.Comprehensive performance research of re-CCHP system[J]. Acta energiae solaris sinica, 2020, 41(8): 129-136.
[4] 王帅飞, 王维庆, 王海云, 等. 基于可再生能源的冷热电联供系统优化[J]. 太阳能学报, 2021, 42(9): 26-32.
WANG S F, WANG W Q, WANG H Y, et al.Optimization of cogeneration system based on renewable energy[J]. Acta energiae solaris sinica, 2021, 42(9): 26-32.
[5] 杨晓辉, 张柳芳, 吴龙杰, 等. 含考虑IDR的冷热电联供微网的主动配电网经济优化调度[J]. 电力系统保护与控制, 2022, 50(3): 19-28.
YANG X H, ZHANG L F, WU L J, et al.Economic optimal dispatch of an active distribution network with combined cooling, heating and power microgrids considering integrated demand response[J]. Power system protection and control, 2022, 50(3): 19-28.
[6] 王帅飞, 王维庆, 王海云, 等. 计及联络线功率波动的CCHP容量配置[J]. 太阳能学报, 2021, 42(12): 381-387.
WANG S F, WANG W Q, WANG H Y, et al.CCHP capacity configuration considering power fluctuation of Tie lines[J]. Acta energiae solaris sinica, 2021, 42(12): 381-387.
[7] 路小娟, 孙凯, 高云波. PV/PTST-CCHP系统的运行策略分析和优化配置[J]. 太阳能学报, 2021, 42(12): 1-8.
LU X J, SUN K, GAO Y B.Operation strategy analysis and configuration optimization of PV/PTST-CCHP system[J]. Acta energiae solaris sinica, 2021, 42(12): 1-8.
[8] 贠保记, 白森珂, 张国. 基于混沌自适应粒子群算法的冷热电联供系统优化[J]. 电力系统保护与控制, 2020, 48(10): 123-130.
YUN B J, BAI S K, ZHANG G.Optimization of CCHP system based on a chaos adaptive particle swarm optimization algorithm[J]. Power system protection and control, 2020, 48(10): 123-130.
[9] 胡振亚. 含地源热泵精细化建模的综合能源系统日前优化调度[D]. 北京: 华北电力大学, 2020.
HU Z Y.Optimal scheduling of integrated energy system with improved model of ground-source heat pump[D]. Beijing: North China Electric Power University, 2020.
[10] 李高潮, 卢怀宇, 孙启德, 等. 基于可再生能源的冷热电联供系统集成配置与运行优化研究进展[J]. 电网与清洁能源, 2021, 37(3): 106-119.
LI G C, LU H Y, SUN Q D, et al.Research progress in configuration and operation optimization of combined cooling, heating and power (CCHP) systems based on renewable energy[J]. Power system and clean energy, 2021, 37(3): 106-119.
[11] 王瑞琪, 李珂, 张承慧. 基于混沌多目标遗传算法的微网系统容量优化[J]. 电力系统保护与控制, 2011, 39(22): 16-22.
WANG R Q, LI K, ZHANG C H.Optimization allocation of microgrid capacity based on chaotic multi-objective genetic algorithm[J]. Power system protection and control, 2011, 39(22): 16-22.
[12] 邓剑波, 马瑞, 胡振文, 等. 基于改进粒子群算法的冷热电联供微网优化调度[J]. 电力科学与技术学报, 2018, 33(2): 35-42.
DENG J B, MA R, HU Z W, et al.Optimal scheduling of micro grid with CCHP systems based on improved particle swarm optimization algorithm[J]. Journal of electric power science and technology, 2018, 33(2): 35-42.
[13] CHICCO G, MANCARELLA P.Matrix modelling of small-scale trigeneration systems and application to operational optimization[J]. Energy, 2009, 34(3): 261-273.
[14] CARDONA E, PIACENTINO A.Cogeneration: a regulatory framework toward growth[J]. Energy policy, 2005, 33(16): 2100-2111.
[15] LI L X, YU S W, MU H L, et al.Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies[J]. Energy, 2018, 162: 825-840.
[16] 王欣欣, 董潇健, 沈佳妮, 等. 冷热电联供系统设计和运行集成优化[J]. 化工学报, 2021, 72(10): 5284-5293.
WANG X X, DONG X J, SHEN J N, et al.Integrated design and operation of combined cooling, heating and power system[J]. CIESC journal, 2021, 72(10): 5284-5293.
[17] 熊焰, 吴杰康, 王强, 等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报, 2015, 35(14): 3616-3625.
XIONG Y, WU J K, WANG Q, et al.An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage[J]. Proceedings of the CSEE, 2015, 35(14): 3616-3625.
[18] 刘燕华, 张楠, 张旭. 考虑储能运行成本的风光储微网的经济运行[J]. 现代电力, 2013, 30(5): 13-18.
LIU Y H, ZHANG N, ZHANG X.Economic operation of wind-PV-ES hybrid microgrid by considering of energy storage operational cost[J]. Modern electric power, 2013, 30(5): 13-18.
[19] 王江江, 杨昆, 刘娟娟. 生物质燃气冷热电联供系统性能分析[J]. 农业机械学报, 2014, 45(3): 196-205.
WANG J J, YANG K, LIU J J.Performance analysis of a biogas combined cooling heating and power system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3): 196-205.
[20] 郭威, 杨鹏, 孙胜博, 等. 计及生物质能的热电联供系统经济运行优化策略[J]. 电力系统保护与控制, 2021, 49(11): 88-96.
GUO W, YANG P, SUN S B, et al.Optimization strategy of a rural combined heat and power system considering biomass energy[J]. Power system protection and control, 2021, 49(11): 88-96.
[21] 方绍凤, 周任军, 许福鹿, 等. 考虑电热多种负荷综合需求响应的园区微网综合能源系统优化运行[J]. 电力系统及其自动化学报, 2020, 32(1): 50-57.
FANG S F, ZHOU R J, XU F L, et al.Optimal operation of integrated energy system for park micro-grid considering comprehensive demand response of power and thermal loads[J]. Proceedings of the CSU-EPSA, 2020, 32(1): 50-57.

基金

中央高校基本科研基金(2018QN097); 山西省高校科技创新项目(2021L012)

PDF(1861 KB)

Accesses

Citation

Detail

段落导航
相关文章

/