基于多标准交叉验证的城市加氢站定量风险分析

王海清, 左鸿谔, 郑威, 马佳雯

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 459-464.

PDF(1930 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1930 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 459-464. DOI: 10.19912/j.0254-0096.tynxb.2022-1206

基于多标准交叉验证的城市加氢站定量风险分析

  • 王海清1, 左鸿谔1, 郑威2, 马佳雯1
作者信息 +

QUANTITATIVE RISK ASSESSMENT OF URBAN HYDROGEN FUELLING STATIONS BASED ON MULTI-STANDARD CROSSANALYSIS

  • Wang Haiqing1, Zuo Honge1, Zheng Wei2, Ma Jiawen1
Author information +
文章历史 +

摘要

针对不同领域国家标准中安全距离计算的差异性问题对某典型加氢站配置模型进行定量风险分析(QRA),计算出加氢站设施与站外防护目标安全距离和个人风险,实现多领域(氢能领域与危险化学品领域)标准交叉验证并通过揭示加氢站氢能标准和危化品标准的适配性差异,为加氢站的设计、建设和风险控制提供多维度参考。

Abstract

Addressing the variability of safety distance calculations in national standards for different fields quantitative risk analysis (QRA) was carried out on a typical hydrogen fuelling station configuration model, and the safety distance and personal risk between the hydrogen fuelling station facilities and the protection targets outside the station were calculated. The cross-validation of standards in many fields (hydrogen energy field and hazardous chemicals field) was realized, and the adaptability difference between hydrogen energy standards and hazardous chemicals standards in hydrogen fuelling stations was revealed, which provided a multi-dimensional reference for the design, construction and risk control of hydrogen fuelling stations.

关键词

/ 安全 / 加氢 / 定量风险分析 / 多标准交叉验证

Key words

hydrogen / safety / hydrogenation / quantitative risk assessment / multi-standard crossanalysis

引用本文

导出引用
王海清, 左鸿谔, 郑威, 马佳雯. 基于多标准交叉验证的城市加氢站定量风险分析[J]. 太阳能学报. 2023, 44(11): 459-464 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1206
Wang Haiqing, Zuo Honge, Zheng Wei, Ma Jiawen. QUANTITATIVE RISK ASSESSMENT OF URBAN HYDROGEN FUELLING STATIONS BASED ON MULTI-STANDARD CROSSANALYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 459-464 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1206
中图分类号: X937   

参考文献

[1] HAM K, MARANGON A, MIDDHA P, et al.Benchmark exercise on risk assessment methods applied to a virtual hydrogen refuelling station[J]. International journal of hydrogen energy, 2011, 36(3): 2666-2677.
[2] SUZUKI T, SHIOTA K, IZATO Y I, et al.Quantitative risk assessment using a Japanese hydrogen refueling station model[J]. International journal of hydrogen energy, 2021, 46(11): 8329-8343.
[3] KWON D, CHOI S K, YU C.Improved safety by crossanalyzing quantitative risk assessment of hydrogen refueling stations[J]. International journal of hydrogen energy, 2022, 47(19): 10788-10798.
[4] GB 50516—2010, 加氢站技术规范[S].
GB 50516—2010, Technical code for bydrogen fuelling station[S].
[5] GB 36894—2018, 危险化学品生产装置和储存设施风险基准[S].
GB 36894—2018, Risk criteria for hazardous chemicals production unit and storage installations[S].
[6] GB 37243—2019, 危险化学品生产装置和储存设施外部安全防护距离确定方法[S].
GB 37243—2019, Method for determining the external safety protection distance of hazardous chemical production and storage facilities[S].
[7] GROTH K M, HECHT E S.HyRAM: a methodology and toolkit for quantitative risk assessment of hydrogen systems[J]. International journal of hydrogen energy, 2017, 42(11): 7485-7493.
[8] EHRHART B, HECHT E.Hydrogen plus other alternative fuels risk assessment models(HyRAM+) version 4.1 technical reference manual[R]. Sandia national lab.(SNL-NM), albuquerque, NM (United States); sandia national laboratories, SNL california, 2022.
[9] TORVI D A, HADJISOPHOCLEOUS G V, HUM J.A new method for estimating the effects of thermal radiation from fires on building occupants[C]//Proceedings of ASME 2000 International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2021: 65-72.

基金

国家重点研发计划(2019YFB2006305)

PDF(1930 KB)

Accesses

Citation

Detail

段落导航
相关文章

/