海上风电全钢质筒型基础波浪疲劳分析与优化

曾斌, 刘海波, 周德棕, 张宇彤, 丛云龙, 唐志德

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 367-374.

PDF(2167 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2167 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 367-374. DOI: 10.19912/j.0254-0096.tynxb.2022-1211

海上风电全钢质筒型基础波浪疲劳分析与优化

  • 曾斌1, 刘海波1, 周德棕2, 张宇彤2, 丛云龙3, 唐志德3
作者信息 +

FATIGUE ANALYSIS CAUSED BY WAVE AND OPTIMIZATION OF ALL-STEEL BUCKET FOUNDATION FOR OFFSHORE WIND TURBINES

  • Zeng Bin1, Liu Haibo1, Zhou Dezong2, Zhang Yutong2, Cong Yunlong3, Tang Zhide3
Author information +
文章历史 +

摘要

疲劳是控制海上风电基础结构安全的主要因素之一,针对海上风电全钢质新型筒型基础结构疲劳问题展开研究,基于随机波浪理论与频谱分析方法,阐述了长期海况分布下结构交变应力服从Rayleigh分布的疲劳损伤累积计算方法;借助全钢质海上风电筒型基础基于前述理论开展了疲劳损伤与寿命计算,获得筒型基础主要的疲劳破坏点集中在斜撑与圆柱体连接的位置,并基于此进行了结构局部优化,结果对比表明关键部位的几何优化可极大降低应力集中程度,减小疲劳累积损伤,同时也验证了疲劳计算结果对热点应力水平具有高敏感性。

Abstract

Fatigue is one of the major factors controlling the safety of foundation for offshore wind turbines. The fatigue research of the new all-steel bucket foundation for offshore wind turbines is carried out in this paper based on the random wave theory and spectrum analysis method, the fatigue damage accumulation calculation method that the structure alternating stress under long-term sea state obeys Rayleigh distribution is discussed. The cumulative fatigue damage and life of the all-steel bucket foundation for offshore wind turbines is calculated based on the aforementioned theory, the results indicate that the main fatigue failure points of bucket foundation centrally located in the intersection of the diagonal brace and the cylinder. According to the previous results, local geometry of the structure is optimized. Comparison of results indicates that the geometric optimization of key parts can greatly reduce the degree of stress concentration and cumulative fatigue damage. Meanwhile, it verifies that the fatigue calculation results have high sensitivity to the level of hot spot stress.

关键词

海上风电 / 频谱分析 / 疲劳损伤 / 筒型基础 / 几何优化

Key words

offshore wind turbines / spectrum analysis / fatigue damage / bucket foundation / geometry optimization

引用本文

导出引用
曾斌, 刘海波, 周德棕, 张宇彤, 丛云龙, 唐志德. 海上风电全钢质筒型基础波浪疲劳分析与优化[J]. 太阳能学报. 2023, 44(11): 367-374 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1211
Zeng Bin, Liu Haibo, Zhou Dezong, Zhang Yutong, Cong Yunlong, Tang Zhide. FATIGUE ANALYSIS CAUSED BY WAVE AND OPTIMIZATION OF ALL-STEEL BUCKET FOUNDATION FOR OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 367-374 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1211
中图分类号: TK89   

参考文献

[1] 国家发展和改革委员会. 关于印发“十四五”可再生能源发展规划的通知(发改能源〔2021〕1445号)[EB/OL].https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/t20220601_ 1326719.html.
National Development and Reform Commission. Notice on issuing the "14th Five Year Plan" for the development of renewable energy(NDRC Energy [2021]No.1445). [EB/OL]https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/t20220601_ 1326719.html.
[2] 刘刚. 近海风机筒型基础的疲劳损伤数值分析[J]. 低温建筑技术, 2019, 41(9): 107-109.
LIU G.Numerical analysis of fatigue damage in offshore wind turbine bucket foundation[J]. Low temperature architecture technology, 2019, 41(9): 107-109.
[3] 吴永祥, 罗翔. 基于SACS-Bladed的海上风电机组基础结构疲劳分析方法研究[J]. 风能, 2016(2): 106-109.
WU Y X, LUO X.Research on fatigue analysis method of offshore wind turbine foundation structure based on SACS-Bladed[J]. Wind energy, 2016(2): 106-109.
[4] 余建星, 赵岩, 余杨, 等. 基于S-N曲线和断裂力学的浮式风力机张力腿疲劳评估[J]. 太阳能学报, 2021, 42(9): 250-255.
YU J X, ZHAO Y, YU Y, et al.Fatigue assessment of tethers of fowt based on S-N curve and fracture mechanics[J]. Acta energiae solaris sinica, 2021, 42(9): 250-255.
[5] 季晓强, 王健, 高宏飙, 等. 海上风电机组基础结构典型管节点疲劳分析[J]. 风能, 2018(11): 80-83.
JI X Q, WANG J, GAO H B, et al.Fatigue analysis of typical tubular joints of offshore wind turbine foundation structure[J]. Wind energy, 2018(11): 80-83.
[6] 李志昊, 岳敏楠, 闫阳天, 等. 不同海况下近海超大型风力机动力学响应及结构损伤分析[J]. 太阳能学报, 2022, 43(7): 366-374.
LI Z H, YUE M N, YAN Y T, et al.Analysis of dynamic response and structural damage of offshore super large wind turbine under different sea conditions[J]. Acta energiae solaris sinica, 2022, 43(7): 366-374.
[7] 崔磊, 何勇, 徐伽南, 等. 张力腿平台关键部位疲劳可靠性分析[J]. 海洋工程, 2013, 31(1): 16-25.
CUI L, HE Y, XU J N, et al.Fatigue reliability analyses on key parts of tension leg platform[J]. The ocean engineering, 2013, 31(1): 16-25.
[8] 李炜, 李华军, 郑永明, 等. 海上风电基础结构疲劳寿命分析[J]. 水利水运工程学报, 2011(3): 70-76.
LI W, LI H J, ZHENG Y M, et al.Fatigue life analysis of the foundation structure of offshore wind turbine[J]. Hydro-science and engineering, 2011(3): 70-76.
[9] 方华灿. 海洋钢结构的模糊概率断裂力学第四讲疲劳与断裂力学强度的随机性与模糊性描述[J]. 中国海洋平台, 1998, 13(4): 37-43.
FANG H C.The description of randomness and fuzziness of fatigue and fracture mechancis strength[J]. China offshore platform, 1998, 13(4): 37-43.
[10] VERITAS D N, LLOYD G.Fatigue design of offshore steel structures[S]. DNV recommended practice DNV-RP-C203, 2014.06.
[11] PARIS P C, ERDOGAN F A.A critical analysis of crack propagation laws[J]. Journal of fluids engineering, 1963, 85(4): 528-534.
[12] 胡毓仁, 李典庆, 陈伯真. 船舶与海洋工程结构疲劳可靠性分析[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010.
HU Y R, LI D Q, CHEN B Z.Fatigue reliability analysis of ship and ocean engineering structures[M]. Harbin: Harbin Engineering University Press, 2010.
[13] 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007.
DAI Y S, SHEN J W, SONG J Z.Ship wave loads[M]. Beijing: National Defense Industry Press, 2007.
[14] 华锋, 范斌, 卢燕, 等. 海浪谱峰周期与跨零周期的一个经验关系式[J]. 海洋科学进展, 2004, 22(1): 16-20.
HUA F, FAN B, LU Y, et al.An empirical relation between sea wave spectrum peak period and zero-crossing period[J]. Advances in marine science, 2004, 22(1): 16-20.
[15] SY/T 10049—2004, 海上钢结构疲劳强度分析推荐作法[S].
SY/T 10049—2004, Recommended practice for fatigue strength analysis of offshore steel structure[S].
[16] VERITAS D N, LLOYD G.Design of offshore steel structures, general-LRFD method[S]. DNVGL-OS-C101, 2017.07.

PDF(2167 KB)

Accesses

Citation

Detail

段落导航
相关文章

/