传统太阳能光伏光热(PV/T)系统的光电转换和光热转换过程耦合在一起,对太阳能全光谱能量的利用率较低,为使得光电、光热过程解耦,该文探究Ag、CNT、CNT/Ag纳米流体作为分光谱PV/T系统媒介时的光谱及能量性能。首先对不同浓度纳米流体的光谱性能进行测试,然后通过实验研究不同浓度的CNT/Ag纳米流体对系统电效率和热效率的影响。结果发现相比于Ag纳米流体,浓度为1×106、3×106、5×106、1×107 μg/m3的CNT/Ag纳米流体在太阳电池光谱响应区的透过率分别上升了8.6%、9.3%、8.5%、9.2%,响应区外波段的吸收率增加了30.4%、44.5%、58.4%、56.7%。系统电效率最高为8.2%、热效率最高为45%,当CNT/Ag纳米流体浓度为5×106 μg/m3时,分光谱容器效率最高为18.3%时热效率达到了43%,电效率为7%。
Abstract
For conventional solar photovoltaic/thermal (PV/T) system, the photothermal and photoelectric conversion processes are coupled. Thus, the solar full-spectral utilization efficiency is not high. In order to decouple the photoelectric and photothermal conversion processes, in this paper, the spectral and energy performance of the PV/T system were investigated when the Ag, CNT, and CNT/Ag nanofluids are used as the media. Firstly, the spectral properties of nanofluids with different concentrations are tested. Secondly, the effects of different concentrations of CNT/Ag nanofluids on the electrical and thermal efficiency of the PV/T systems are studied by experiments. The results show that compared with independent Ag nanofluids, the solar spectral transmittance in the PV cell response range for 1×106, 3×106, 5×106 μg/m3, and 1×107 μg/m3 CNT/Ag nanofluids are increased by 8.6%, 9.3%, 8.5%, and 9.2%, the solar spectral absorptivity not in the PV cell response range are increased by 30.4%, 44.5%, 58.4%, and 56.7%, respectively. The electrical efficiency of PV/T system is up to 8.2%, and the thermal efficiency is up to 45%. When the concentration of CNT/Ag nanofluid is 5×106 μg/m3, the filtering efficiency is reached to 18.3%, while the thermal and electrical efficiency approached to 43% and 7%, respectively.
关键词
太阳能光伏光热系统 /
分光谱利用 /
碳纳米流体 /
银纳米流体
Key words
solar photovoltaic/thermal system /
beam splitting utilization /
carbon nanofluids /
Ag nanofluids
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王长贵. 太阳电池的发展趋势[J]. 太阳能, 2008(1): 14-18.
WANG C G.Development trend of solar cells[J]. Solar energy, 2008(1): 14-18.
[2] VENTURA C, TINA G M, GAGLIANO A, et al.Enhanced models for the evaluation of electrical efficiency of PV/T modules[J]. Solar energy, 2021, 224: 531-544.
[3] MOJIRI A, TAYLOR R, THOMSEN E, et al.Spectral beam splitting for efficient conversion of solar energy-a review[J]. Renewable and sustainable energy reviews, 2013, 28: 654-663.
[4] VENKATESH T, MANIKANDAN S, SELVAM C, et al.Performance enhancement of hybrid solar PV/T system with graphene based nanofluids[J]. International communications in heat and mass transfer, 2022, 130: 105794.
[5] JIANG T L, ZOU T, WANG G, et al.Preparation and application study in a novel solar PV/thermal system of indium tin oxide nanofluid optical filter[J]. Energy reports, 2022, 8: 5668-5677.
[6] HOSSAIN F, KARIM M R, BHUIYAN A A.A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems[J]. Renewable energy, 2022, 188: 114-131.
[7] KHOSHVAGHT ALIABADI M, RAHNAMA P, ZANGANEH A, et al.Experimental study on metallic water nanofluids flow inside rectangular duct equipped with circular pins (pin channel)[J]. Experimental thermal and fluid science, 2016, 72: 18-30.
[8] LI X K, ZOU C J.Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: an experimental investigation[J]. International journal of heat and mass transfer, 2016, 101: 412-417.
[9] ALMANASSRA I W, MANASRAH A D, AL-MUBAIYEDH U A, et al. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study[J]. Journal of molecular liquids, 2020, 304(prepublish): 111025.
[10] ZHANG D W, HE Z T, GUAN J, et al.Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study[J]. International journal of heat and mass transfer, 2022, 183: 122100.
[11] YU X X, XUAN Y M.Investigation on thermo-optical properties of CuO/Ag plasmonic nanofluids[J]. Solar energy, 2018, 160: 200-207.
[12] DING Y L, ALIAS H, WEN D S, et al.Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)[J]. International journal of heat and mass transfer, 2006, 49(1/2): 240-250.
[13] TAYLOR R A, OTANICAR T, ROSENGARTEN G.Nanofluid-based optical filter optimization for PV/T systems[J]. Light: science & applications, 2012, 1(10): e34.
[14] ZHANG C X, SHEN C, YANG Q R, et al.Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems[J]. Solar energy, 2020, 208: 623-636.
基金
国家自然科学基金青年项目(51908527); 江苏省自然科学基金面上项目(BK20221315); 建筑节能安徽省工程技术中心开放课题(AHJZJN-2021-03); 广东省新能源和可再生能源研究开发与应用重点实验室开放基金(E239kf1001)