新能源接入电力系统的宽频振荡风险识别与抑制

程静, 苏乐, 岳雷

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 565-574.

PDF(4039 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4039 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 565-574. DOI: 10.19912/j.0254-0096.tynxb.2022-1434

新能源接入电力系统的宽频振荡风险识别与抑制

  • 程静1,2, 苏乐1, 岳雷3
作者信息 +

POWER SYSTEM BROADBAND OSCILLATION RISK IDENTIFICATION AND SUPPRESSION FOR NEW ENERGY ACCESS

  • Cheng Jing1,2, Su Le1, Yue Lei3
Author information +
文章历史 +

摘要

电力系统振荡稳定性问题由来已久,随着新能源的高比例、大规模接入,因其不确定性、弱惯性特性及其与传统电力系统的交互作用,将给电力系统振荡问题带来新的挑战。该文提出一种基于模式谐振法的电力系统振荡风险识别与抑制方法,将新能源发电部分和传统电力系统部分作为两个独立的子系统,以其开环状态矩阵特征值判定模式谐振条件满足情况,进一步估算闭环系统特征值及振荡情况;在此基础上,引入参与因子,确定引发各频段振荡的主导因素,优化调节系统参数,改变系统特征值分布,破除振荡条件,从而抑制振荡;建立系统模型,并在Matlab软件平台进行算例仿真分析与验证。结果表明:该方法能有效识别系统宽频振荡,并准确识别振荡诱因,有效抑制振荡,提高系统阻尼,提升系统稳定性。

Abstract

The power system oscillation and stability problem have a long history. With the high proportion and large-scale access to new energy, its uncertainty, low inertia characteristics and interaction with traditional power systems will bring new challenges to the oscillation problem. In this paper, a method of power system oscillation risk identification and suppression based on mode analysis is proposed. The new energy generation part and the traditional power system part were regarded as two independent subsystems, and their open-loop state matrix eigenvalues were used to determine the satisfaction of mode resonance conditions, and the closed-loop system eigenvalues and oscillation conditions were further estimated. On this basis, the participation factors were introduced to observe the dominant factors that caused oscillations in each frequency band, optimized and adjusted the system parameters to change the distribution of system eigenvalues, destroyed the oscillation conditions, and thus suppressed oscillations. The system model was established and an example simulation analysis and verification were carried out on the Matlab software platform. The results indicate that the oscillation risk identification and suppression method can detect the wideband oscillation of the power system to its advantage, accurately identify the oscillation causes, and has a good ability to restrain and eliminate oscillation, further improving the whole closed-loop system damping and stability.

关键词

风力发电 / 光伏发电 / 电力系统 / 宽频振荡 / 识别与抑制 / 模式谐振

Key words

wind power / PV power / electric power systems / circuit oscillations / identification and suppression / mode resonance

引用本文

导出引用
程静, 苏乐, 岳雷. 新能源接入电力系统的宽频振荡风险识别与抑制[J]. 太阳能学报. 2023, 44(11): 565-574 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1434
Cheng Jing, Su Le, Yue Lei. POWER SYSTEM BROADBAND OSCILLATION RISK IDENTIFICATION AND SUPPRESSION FOR NEW ENERGY ACCESS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 565-574 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1434
中图分类号: TK89    TM762   

参考文献

[1] 郭剑波. 构建新型电力系统是实现能源转型、达成“双碳”目标的有效途径[N]. 国家电网报, 2021-09-07(5).
GUO J B. Building a new power system is an effective way to realize energy transformation and achieve the“double carbon”goal[N]. State grid news, 2021-09-07(5).
[2] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[3] 张金平, 周强, 王定美, 等. “双碳”目标下新型电力系统发展路径研究[J]. 华电技术, 2021, 43(12): 46-51.
ZHANG J P, ZHOU Q, WANG D M, et al.Research on the development path of new power system to achieve carbon peaking and carbon neutrality[J]. Huadian technology, 2021, 43(12): 46-51.
[4] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[5] 高志远, 张晶, 庄卫金, 等. 关于新型电力系统部分特点的思考[J]. 电力自动化设备, 2023, 43(6): 137-143, 151.
GAO Z Y, ZHANG J, ZHUANG W J, et al.Thoughts on some characteristics of new style power system[J]. Electric power automation equipment, 2023, 43(6): 137-143, 151.
[6] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[7] 李光辉, 王伟胜, 张兴, 等. 双馈风电场并网次/超同步振荡建模与机理分析(二):阻抗特性与振荡机理分析[J]. 中国电机工程学报, 2022, 42(10): 3614-3627.
LI G H, WANG W S, ZHANG X, et al.Modeling and mechanism analysis of sub/super-synchronous oscillation of grid-connected DFIG wind farms(part Ⅱ): analysis of impedance characteristic and oscillation mechanism[J]. Proceedings of the CSEE, 2022, 42(10): 3614-3627.
[8] 张思彤, 梁纪峰, 马燕峰, 等. 直驱风电场经柔性直流输电并网的宽频振荡特性分析[J]. 电力系统保护与控制, 2022, 50(14): 33-42.
ZHANG S T, LIANG J F, MA Y F, et al.Broadband oscillation characteristics analysis of a VSC-HVDC connected direct drive wind farm[J]. Power system protection and control, 2022, 50(14): 33-42.
[9] 杨超然, 宫泽旭, 洪敏, 等. 外环动态影响下变流器广义阻抗判据的适用性分析[J]. 中国电机工程学报, 2021, 41(9): 3012-3024.
YANG C R, GONG Z X, HONG M, et al.Applicability analysis of the generalized-impedance stability criterion for converters considering the outer-loop dynamics[J]. Proceedings of the CSEE, 2021, 41(9): 3012-3024.
[10] LI C Y, LIANG J, CIPCIGAN L M, et al.DQ impedance stability analysis for the power-controlled grid-connected inverter[J]. IEEE transactions on energy conversion, 2020, 35(4): 1762-1771.
[11] 黄世楼, 王彤, 金铭鑫, 等. 多光储虚拟同步发电机接入多机电力系统的动态交互作用机理分析[J/OL]. 高电压技术, 2021: 1-17[2021-08-23]. https: //doi.org/10.13336/j.1003-6520.hve.20210573.
HUANG S L, WANG T, JIN M X, et al. Dynamic interaction mechanism analysis of multiple photovoltaic-battery virtual synchronous generators integrated multi-machine power system[J/OL]. High voltage engineering, 2021: 1-17[2021-08-23]. https: //doi.org/10.13336/j.1003-6520.hve.20210573.
[12] WU W H, ZHOU L M, CHEN Y D, et al.Sequence-impedance-based stability comparison between VSGs and traditional grid-connected inverters[J]. IEEE transactions on power electronics, 2019, 34(1): 46-52.
[13] 王一珺, 杜文娟, 王海风. 基于改进复转矩系数法的多风电场接入引发多机电力系统次同步振荡机理分析[J]. 中国电机工程学报, 2021, 41(7): 2383-2395.
WANG Y J, DU W J, WANG H F.Analysis of subsynchronous oscillation in multi-machine power system caused by the integration of multiple wind farms based on improved complex torque coefficient method[J]. Proceedings of the CSEE, 2021, 41(7): 2383-2395.
[14] UGWUANYI N S, KESTELYN X, THOMAS O, et al.A new fast track to nonlinear modal analysis of power system using normal form[J]. IEEE transactions on power systems, 2020, 35(4): 3247-3257.
[15] 李彦, 王海风. 含并联直驱风电机组并网的风电场多开环模式谐振[J]. 现代电力, 2022, 39(1): 19-25.
LI Y, WANG H F.Multi open-loop mode resonance of wind farm with grid-connected parallel permanent magnet synchronous generators[J]. Modern electric power, 2022, 39(1): 19-25.
[16] 苏国贇, 杜文娟, 王海风. 并联感应电动机聚合负荷引起含双馈风电场电力系统振荡研究[J]. 中国电机工程学报, 2021, 41(6): 2125-2136.
SU G Y, DU W J, WANG H F.Research on oscillations of the power system integrated with the DFIG-based wind farm as caused by the aggregated load of induction motors in parallel connection[J]. Proceedings of the CSEE, 2021, 41(6): 2125-2136.
[17] 胡文波, 贾祺, 刘侃, 等. 低运行工况下直驱风电场电流内环主导的次同步振荡特性研究[J]. 太阳能学报, 2022, 43(4): 341-350.
HU W B, JIA Q, LIU K, et al.Sub-synchronous oscillation of direct drive PMSG based wind farm under low operating conditions connected to weak grid[J]. Acta energiae solaris sinica, 2022, 43(4): 341-350.
[18] 郭永辉, 张新燕, 周远翔, 等. 基于转子侧阻尼电抗器的非线性阻尼控制器抑制次同步振荡策略研究[J]. 太阳能学报, 2021, 42(12): 230-238.
GUO Y H, ZHANG X Y, ZHOU Y X, et al.Strategy research of subsynchronous oscillation suppression by nonlinear damper on rotor side[J]. Acta energiae solaris sinica, 2021, 42(12): 230-238.
[19] 陈骁, 杜文娟, 王海风. 开环模式谐振条件下直驱风机接入引发电力系统宽频振荡的研究[J]. 中国电机工程学报, 2019, 39(9): 2625-2636.
CHEN X, DU W J, WANG H F.Analysis on wide-range-frequency oscillations of power systems integrated with PMSGs under the condition of open-loop modal resonance[J]. Proceedings of the CSEE, 2019, 39(9): 2625-2636.
[20] 苏乐. 新能源并网的电力系统宽频振荡问题分析[D]. 乌鲁木齐: 新疆大学, 2022.
SU L.Analysis of broadband oscillation in power system with new energy grid connection[D]. Urumuqi: Xinjiang University, 2022.

基金

新疆可再生能源发电与并网技术自治区重点实验室开放课题(2020D04048); 新疆维吾尔自治区新疆电力全过程仿真重点实验室奖补资金科技项目(DC30DK220001); 国家重点研发计划(2021YFB1506902); 新疆维吾尔自治区重点研发计划2022B01003-3)

PDF(4039 KB)

Accesses

Citation

Detail

段落导航
相关文章

/