基于VMD和改进BiLSTM的短期风电功率预测

朱菊萍, 魏霞, 谢丽蓉, 杨家梁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 422-428.

PDF(2149 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2149 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 422-428. DOI: 10.19912/j.0254-0096.tynxb.2023-0032

基于VMD和改进BiLSTM的短期风电功率预测

  • 朱菊萍, 魏霞, 谢丽蓉, 杨家梁
作者信息 +

SHORT-TERM WIND POWER PEEDICTION BASED ON VMD AND IMPROVED BiLSTM

  • Zhu Juping, Wei Xia, Xie Lirong, Yang Jialiang
Author information +
文章历史 +

摘要

精准的短期风电功率预测对电力系统稳定运行至关重要。为提高短期预测精确度,提出一种基于变分模态分解(VMD)-样本熵(SE)和利用注意力(attention)机制改进双向长短期记忆网络(BiLSTM)以及误差修正的组合预测模型。首先,采用VMD将原始功率数据分解为若干个相对平稳的子序列,重构样本熵值相似分量以降低复杂性;然后,引入Attention对BiLSTM的隐含层状态输出分配相应的权重以突出重要影响的输入特征,同时采用极限梯度提升(XGBoost)对误差进行修正,从而进一步提高预测精确度;最后,将初步预测值和修正预测值相加得到最终结果。采用风电场实际数据进行验证,结果表明,所提组合模型的平均绝对误差(MAE)下降至1.6565,与其他模型相比精度提升25.8%~56.5%,具有较好的预测效果。

Abstract

Accurate short-term wind power forecasting is critical to stable power system operation. To improve the short-term prediction accuracy, a combined prediction model based on variational mode decomposition (VMD), sample entropy (SE) and improved bidirectional long short-term memory (BiLSTM) with error correction using Attention mechanism is proposed. Firstly, VMD is used to decompose the original power data into several relatively smooth subsequences and reconstruct the sample entropy similar components to reduce the complexity. Then, attention is introduced to assign corresponding weights to the state outputs of the implicit layer of BiLSTM to highlight the important influential input features, and extreme gradient boosting (XGBoost) is used to correct the error so as to further improve the prediction accuracy. Finally, the final result is obtained by adding the preliminary prediction and the revised prediction. The actual data of wind farms are used for verification, and the results show that the mean absolute error (MAE) of the proposed combined model decreases to 1.6565, and the accuracy is improved by 25.8%-56.5% compared with other models, which has a better prediction effect.

关键词

风电功率 / 预测 / 变分模态分解 / 注意力机制 / 双向长短期记忆网络 / 误差修正

Key words

wind power / forecasting / variational mode decomposition / attention mechanism / bidirectional long short-term memory / error correction

引用本文

导出引用
朱菊萍, 魏霞, 谢丽蓉, 杨家梁. 基于VMD和改进BiLSTM的短期风电功率预测[J]. 太阳能学报. 2024, 45(6): 422-428 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0032
Zhu Juping, Wei Xia, Xie Lirong, Yang Jialiang. SHORT-TERM WIND POWER PEEDICTION BASED ON VMD AND IMPROVED BiLSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 422-428 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0032
中图分类号: TM614   

参考文献

[1] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[2] 祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2020, 48(9): 121-127.
ZHU X C.Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power system protection and control, 2020, 48(9): 121-127.
[3] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[4] 唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58(12): 213-236.
TANG X Z, GU N W, HUANG X Q, et al.Progress on short term wind power forecasting technology[J]. Journal of mechanical engineering, 2022, 58(12): 213-236.
[5] 谢小瑜, 周俊煌, 张勇军. 深度学习在泛在电力物联网中的应用与挑战[J]. 电力自动化设备, 2020, 40(4): 77-87.
XIE X Y, ZHOU J H, ZHANG Y J.Application and challenge of deep learning in Ubiquitous Power Internet of Things[J]. Electric power automation equipment, 2020, 40(4): 77-87.
[6] LIU Y Q, GONG C Y, YANG L, et al.DSTP-RNN: a dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction[J]. Expert systems with applications, 2020, 143: 113082.
[7] 简定辉, 李萍, 黄宇航. 基于GA-VMD-ResNet-LSTM网络的短期电力负荷预测[J]. 国外电子测量技术, 2022, 41(10): 15-22.
JIAN D H, LI P, HUANG Y H.Short-term power load forecasting based on GA-VMD-ResNet-LSTM network[J]. Foreign electronic measurement technology, 2022, 41(10): 15-22.
[8] 龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(增刊1): 81-86.
GONG P Y, LUO Y F, FANG Z M, et al.Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of computer applications, 2021, 41(S1): 81-86.
[9] 王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892.
WANG Y H, SHI Y X, ZHOU X, et al.Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention[J]. High voltage engineering, 2022, 48(5): 1884-1892.
[10] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[11] 魏骜, 茅大钧, 韩万里, 等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程, 2020, 35(4): 203-209.
WEI A, MAO D J, HAN W L, et al.Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of engineering for thermal energy and power, 2020, 35(4): 203-209.
[12] 张妍, 韩璞, 王东风, 等. 基于变分模态分解和LSSVM的风电场短期风速预测[J]. 太阳能学报, 2018, 39(1): 194-202.
ZHANG Y, HAN P, WANG D F, et al.Short-term prediction of wind speed for wind farm based on variational mode decomposition and LSSVM model[J]. Acta energiae solaris sinica, 2018, 39(1): 194-202.
[13] SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S.The performance of LSTM and BiLSTM in forecasting time series[C]//2019 IEEE International Conference on Big Data (Big Data). Los Angeles, CA, USA, 2019: 3285-3292.
[14] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745-1751.
PENG W, WANG J R, YIN S Q.Short-term load forecasting model based on Attention-LSTM in electricity market[J]. Power system technology, 2019, 43(5): 1745-1751.
[15] 姚林, 张岩, 陈龙, 等. 基于自适应VMD-注意力机制LSTM的时间序列预测[J]. 控制工程, 2022, 29(7): 1337-1344.
YAO L, ZHANG Y, CHEN L, et al.Time series prediction based on adaptive VMD and LSTM with attention mechanism[J]. Control engineering of China, 2022, 29(7): 1337-1344.
[16] LIN Z F, CHENG L L, HUANG G H.Electricity consumption prediction based on LSTM with attention mechanism[J]. IEEJ transactions on electrical and electronic engineering, 2020, 15(4): 556-562.
[17] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[18] 魏炘, 石强, 符文熹, 等. 考虑CEEMDAN样本熵和SVR的短期风速预测[J]. 水电能源科学, 2020, 38(11): 207-210.
WEI X, SHI Q, FU W X, et al.Short-term wind speed prediction with CEEMDAN sample entropy and SVR[J]. Water resources and power, 2020, 38(11): 207-210.
[19] 任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(8): 108-116.
REN J J, WEI H H, ZOU Z L, et al.Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power system protection and control, 2022, 50(8): 108-116.
[20] 杨国清, 刘世林, 王德意, 等. 基于Attention-GRU风速修正和Stacking的短期风电功率预测[J]. 太阳能学报, 2022, 43(12): 273-281.
YANG G Q, LIU S L, WANG D Y, et al.Short-term wind power forecasting based on Attention-GRU wind speed correction and stacking[J]. Acta energiae solaris sinica, 2022, 43(12): 273-281.
[21] 周盛山, 汤占军, 王金轩, 等. EEMD和CNN-XGBoost在风电功率短期预测的应用研究[J]. 电子测量技术, 2020, 43(22): 55-61.
ZHOU S S, TANG Z J, WANG J X, et al.Application of EEMD and CNN-XGBoost in short-term wind power prediction[J]. Electronic measurement technology, 2020, 43(22): 55-61.

基金

国家自然科学基金(62163034)

PDF(2149 KB)

Accesses

Citation

Detail

段落导航
相关文章

/