基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测

马志侠, 张林鍹, 巴音塔娜, 谢明浩, 张盼盼, 王馨

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 429-435.

PDF(1931 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1931 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 429-435. DOI: 10.19912/j.0254-0096.tynxb.2023-0060

基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测

  • 马志侠1, 张林鍹1,2, 巴音塔娜1, 谢明浩1, 张盼盼1, 王馨1
作者信息 +

ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON ADAPTIVE QUADRATIC MODE DECOMPOSITION AND CNN-BiLSTM

  • Ma Zhixia1, Zhang Linxuan1,2, Ba Yintana1, Xie Minghao1, Zhang Panpan1, Wang Xin1
Author information +
文章历史 +

摘要

为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。将ICEEMDAN分解得到的高频分量I1用SSA-VMD进行第二次分解,降低序列不平稳度。同时,构建包含2层池化层的CNN网络进行特征提取与BiLSTM网络的超短期预测模型,最终的风电功率即为各子序列预测结果之和。通过算例分析进行实验表明,所提风电功率预测方法的预测精度优于其他模型,验证了预测模型的优越性。

Abstract

For the purpose of promotion the precision of wind power forecasting, an ultra-short-term wind power forecasting model based on adaptive quadratic mode decomposition, convolutional neural networks and bidirectional long-short term memory network is proposed. In view of the fluctuation of wind power, using the improved fully adaptive noise integrated empirical mode decomposition method to decompose the wind power data. The sparrow search algorithm is introduced to optimize the decomposition number and penalty factor of variational mode decomposition, so that VMD has adaptability. The high-frequency component I1 obtained by decomposition of ICEEMDAN is decomposed secondarily by SSA-VMD to reduce the sequence instability. At the same time, the CNN network containing two pooling layers is constructed for feature extraction with the ultra-short-term prediction model of BiLSTM network, and the prediction results of each subsequence are superimposed to obtain the final wind power output prediction results. Experiments conducted through the analysis of arithmetic examples show that the prediction accuracy of the proposed wind power prediction method is better than other models, which verifies the superiority of the prediction model.

关键词

卷积神经网络 / 长短期记忆网络 / 变分模态分解 / 风电功率预测 / 二次模态分解 / 麻雀搜索算法

Key words

convolutional neural network / long-short term memory network / variational mode decomposition / wind power forecasting / quadratic mode decomposition / sparrow search algorithm

引用本文

导出引用
马志侠, 张林鍹, 巴音塔娜, 谢明浩, 张盼盼, 王馨. 基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J]. 太阳能学报. 2024, 45(6): 429-435 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0060
Ma Zhixia, Zhang Linxuan, Ba Yintana, Xie Minghao, Zhang Panpan, Wang Xin. ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON ADAPTIVE QUADRATIC MODE DECOMPOSITION AND CNN-BiLSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 429-435 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0060
中图分类号: TM614    TP183   

参考文献

[1] 阎洁, 许成志, 刘永前, 等. 基于风速云模型相似日的短期风电功率预测方法[J]. 电力系统自动化, 2018, 42(6): 53-59.
YAN J, XU C Z, LIU Y Q, et al.Short-term wind power prediction method based on wind speed cloud model in similar day[J]. Automation of electric power systems, 2018, 42(6): 53-59.
[2] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[3] 向玲, 邓泽奇, 赵玥. 基于LPF-VMD和KELM的风速多步预测模型[J]. 电网技术, 2019, 43(12): 4461-4467.
XIANG L, DENG Z Q, ZHAO Y.Multi-step wind speed prediction model based on LPF-VMD and KELM[J]. Power system technology, 2019, 43(12): 4461-4467.
[4] LI Z, LUO X R, LIU M J, et al.Wind power prediction based on EEMD-Tent-SSA-LS-SVM[J]. Energy reports, 2022, 8: 3234-3243.
[5] DING Y F, CHEN Z J, ZHANG H W, et al.A short-term wind power prediction model based on CEEMD and WOA-KELM[J]. Renewable energy, 2022, 189: 188-198.
[6] ABDOOS A A.A new intelligent method based on combination of VMD and ELM for short term wind power forecasting[J]. Neurocomputing, 2016, 203: 111-120.
[7] ZHOU Y L, WANG J Z, LU H Y, et al.Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition[J]. Chaos, solitons & fractals, 2022, 157(11): 111982.
[8] 盛四清, 金航, 刘长荣. 基于VMD-WSGRU的风电场发电功率中短期及短期预测[J]. 电网技术, 2022, 46(3): 897-904.
SHENG S Q, JIN H, LIU C R.Short-term and mid-short-term wind power forecasting based on VMD-WSGRU[J]. Power system technology, 2022, 46(3): 897-904.
[9] 曾亮, 雷舒敏, 王珊珊, 等. 基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法[J]. 电网技术, 2021, 45(12): 4701-4712.
ZENG L, LEI S M, WANG S S, et al.Ultra-short-term wind power prediction based on OVMD-SSA-DELM-GM model[J]. Power system technology, 2021, 45(12): 4701-4712.
[10] LI J, ZHANG S Q, YANG Z N.A wind power forecasting method based on optimized decomposition prediction and error correction[J]. Electric power systems research, 2022, 208: 107886.
[11] 李青, 张新燕, 马天娇, 等. 基于ECBO-VMD-WKELM的风电功率超短期多步预测[J]. 电网技术, 2021, 45(8): 3070-3080.
LI Q, ZHANG X Y, MA T J, et al.Multi-step ahead ultra-short term forecasting of wind power based on ECBO-VMD-WKELM[J]. Power system technology, 2021, 45(8): 3070-3080.
[12] LAHOUAR A, BEN HADJ SLAMA J. Hour-ahead wind power forecast based on random forests[J]. Renewable energy, 2017, 109: 529-541.
[13] ZHANG Y C, LE J A, LIAO X B, et al.A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing[J]. Energy, 2019, 168: 558-572.
[14] 陈东峰. 基于ICEEMDAN和SSA-ELM的短期风电功率预测研究[D]. 北京: 华北电力大学, 2021.
CHEN D F.Research on short-term wind power forecasting based on ICEEMDAN and SSA-ELM[D]. Beijing: North China Electric Power University, 2021.
[15] 周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019, 43(4): 180-191.
ZHOU N C, LIAO J Q, WANG Q G, et al.Analysis and prospect of deep learning application in smart grid[J]. Automation of electric power systems, 2019, 43(4): 180-191.
[16] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797-3802.
ZHU Q M, LI H Y, WANG Z Q, et al.Short-term wind power forecasting based on LSTM[J]. Power system technology, 2017, 41(12): 3797-3802.
[17] SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. A comparative analysis of forecasting financial time series using ARIMA, LSTM,BiLSTM[EB/OL].2019: arXiv: 1911.09512. http://arxiv.org/abs/1911.09512.pdf.
[18] 王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892.
WANG Y H, SHI Y X, ZHOU X, et al.Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention[J]. High voltage engineering, 2022, 48(5): 1884-1892.
[19] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.

PDF(1931 KB)

Accesses

Citation

Detail

段落导航
相关文章

/