应用于氢燃料电池的均温板传热性能多因素优化研究

徐玉蓉, 罗仁宏, 崔嵘, 王之丰, 杨建青

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 86-91.

PDF(2141 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2141 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 86-91. DOI: 10.19912/j.0254-0096.tynxb.2023-0100

应用于氢燃料电池的均温板传热性能多因素优化研究

  • 徐玉蓉1, 罗仁宏2, 崔嵘3, 王之丰4, 杨建青1
作者信息 +

MULTI-FACTOR OPTIMIZATION OF HEAT TRANSFER PERFORMANCE OF TEMPERATURE EQUALIZING PLATE APPLIED TO HYDROGEN FUEL CELL

  • Xu Yurong1, Luo Renhong2, Cui Rong3, Wang Zhifeng4, Yang Jianqing1
Author information +
文章历史 +

摘要

为提升氢燃料电池温度的一致性以及散热效能,以均温板作为研究对象,基于理论计算和试验验证搭建均温板计算模型。选取影响均温板传热性能的冷凝段长度、布置角度、冷却工质类型和充液率4个重要因素进行4因素3水平正交试验,并利用极差分析得到各因素各水平对均温板热阻和蒸发段工作面最大温差影响的权重关系。结果显示:在均温板热阻方面,冷却工质类型影响最为显著,冷却工质充液率次之,冷凝段长度对其影响最弱;在均温板蒸发段工作面最大温差方面,冷却工质充液率影响最为显著,冷凝段长度次之,冷却工质类型对其影响最弱。结合分析得到全组最佳组合方案,其热阻值为0.175 K/W,蒸发段最大温差为1.2 K,传热性能表现最佳。

Abstract

In order to reduce the thermal resistance and maximum temperature difference of the uniform temperature plate used in hydrogen fuel cell thermal management, a computational model of the uniform temperature plate is constructed based on theoretical calculations and experimental validation. A four-factor three-level orthogonal experimental optimization scheme is implemented to determine the significant factors affecting the heat transfer performance of the uniform temperature plate, including working fluid type, filling ratio, layout angle, and condenser length. Through range analysis, the weight relationship between the four factors and the thermal resistance and maximum temperature difference of the uniform temperature plate is obtained. The results show that the working fluid type has the greatest impact on the thermal resistance, followed by the filling ratio, while the condenser length has the least effect. For the maximum temperature difference on the evaporator surface of the uniform temperature plate, the filling ratio has the largest influence, followed by the condenser length, while the working fluid type has the smallest impact. By combining the analysis, the optimal combination for the model is determined, with a thermal resistance value of 0.175 K/W and the maximum temperature difference on the evaporator surface of 1.2 K, demonstrating the best heat transfer performance.

关键词

氢能 / 均温板 / 燃料电池 / 正交试验 / 热阻 / 温差

Key words

hydrogen energy / uniform temperature plate / fuel cell / orthogonal test / thermal resistance / temperature difference

引用本文

导出引用
徐玉蓉, 罗仁宏, 崔嵘, 王之丰, 杨建青. 应用于氢燃料电池的均温板传热性能多因素优化研究[J]. 太阳能学报. 2024, 45(6): 86-91 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0100
Xu Yurong, Luo Renhong, Cui Rong, Wang Zhifeng, Yang Jianqing. MULTI-FACTOR OPTIMIZATION OF HEAT TRANSFER PERFORMANCE OF TEMPERATURE EQUALIZING PLATE APPLIED TO HYDROGEN FUEL CELL[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 86-91 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0100
中图分类号: TK172    TB69   

参考文献

[1] 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30.
HOU J, YANG Z, HE T, et al.Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University(science and technology), 2021, 52(1): 19-30.
[2] ZHAO X Q, LI Y K, LIU Z X, et al.Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2015, 40(7): 3048-3056.
[3] 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637.
PENG M, XIA Q F, JIANG L X, et al.Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC journal, 2022, 73(10): 4625-4637.
[4] DE LAS HERAS A, VIVAS F J, SEGURA F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable energy, 2018, 125: 1-20.
[5] 王琦, 徐晓明, 司红磊, 等. 波形结构冷却流道对燃料电池热管理系统性能影响研究[J]. 中国工程机械学报, 2022, 20(2): 95-100.
WANG Q, XU X M, SI H L, et al.Study on the influence of waveform structure cooling channel on the performance of fuel cell thermal management system[J]. Chinese journal of construction machinery, 2022, 20(2): 95-100.
[6] 胡佳丽, 赵春鹏, 肖铎. 水冷燃料电池空气供给系统建模与控制研究[J]. 太阳能学报, 2021, 42(9): 428-433.
HU J L, ZHAO C P, XIAO D.Modeling and control analysis of water-cooled PEM fuel cell air supply system[J]. Acta energiae solaris sinica, 2021, 42(9): 428-433.
[7] CHERNYSHEVA M A, MAYDANIK Y F.Analysis of the thermal resistance of a loop heat pipe based on the P-T diagram of the working fluid operating cycle[J]. International journal of heat and mass transfer, 2023, 209: 124157.
[8] BERNAGOZZI M, MICHÉ N, GEORGOULAS A, et al.Performance of an environmentally friendly alternative fluid in a loop heat pipe-based battery thermal management system[J]. Energies, 2021, 14(22): 7738.
[9] 陈萌, 李静静. 脉动热管用于电动汽车锂电池散热性能试验[J]. 化工进展, 2021, 40(6): 3163-3171.
CHEN M, LI J J.Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe[J]. Chemical industry and engineering progress, 2021, 40(6): 3163-3171.
[10] LIANG L, ZHAO Y H, DIAO Y H, et al.Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array[J]. Applied energy, 2023, 337: 120896.
[11] BARGAL M H S, ABDELKAREEM M A A, TAO Q, et al. Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey[J]. Alexandria engineering journal, 2020, 59(2): 635-655.
[12] 陈飞, 罗仁宏. 基于模型预测控制的水冷型燃料电池冷却系统研究[J]. 汽车技术, 2021(7): 8-13.
CHEN F, LUO R H.Research on water-cooled fuel cell cooling system based on MPC[J]. Automobile technology, 2021(7): 8-13.
[13] YE L F, DING Y F, ZHOU C G, et al.Heat exchange pipe spacing for optimal temperature uniformity on cold radiant ceiling surfaces[J]. Energy and buildings, 2023, 282: 112788.
[14] BAO K L, WANG X H, ZHANG P G, et al.Evaporating temperature uniformity of the pulsating heat pipe with surfactant solutions at different concentrations[J]. Journal of thermal science, 2023, 32(1): 183-191.
[15] KIM J S, SHIN D H, YOU S M, et al.Thermal performance of aluminum vapor chamber for EV battery thermal management[J]. Applied thermal engineering, 2021, 185: 116337.
[16] PATANKAR G, WEIBEL J A, GARIMELLA S V.Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers[J]. International journal of heat and mass transfer, 2017, 106: 648-654.
[17] LI Y, ZHOU W J, LI Z X, et al.Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied thermal engineering, 2019, 156: 471-484.
[18] LI M N, LI L F, XU D.Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe[J]. Cryogenics, 2019, 100: 62-68.
[19] WANG H W, BAI P F, ZHOU H L, et al.An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied thermal engineering, 2019, 159: 113816.
[20] DE SCHEPPER S C K, HEYNDERICKX G J, MARIN G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers & chemical engineering, 2009, 33(1): 122-132.
[21] 万晓琪, 崔晓钰, 谢荣建. 均温板散热技术研究进展[J].化工进展, 2022, 41(2): 554-568.
WAN X Q, CUI X Y, XIE R J.Research progress of vapor chamber heat dissipation technology[J]. Chemical industry and engineering progress, 2022, 41(2): 554-568.
[22] HSIEH S S, LEE R Y, SHYU J C, et al.Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar[J]. Energy conversion and management, 2007, 48(10): 2708-2717.
[23] 周东辉, 罗仁宏, 王之丰. 某商用车发动机舱冷却模块布局优化[J]. 汽车安全与节能学报, 2022, 13(2): 378-385.
ZHOU D H, LUO R H, WANG Z F.Layout optimization of cooling modules in a commercial vehicle engine compartment[J]. Journal of automotive safety and energy, 2022, 13(2): 378-385.
[24] 赵金国, 郭恒. 氢燃料电池氢气利用率提升策略研究[J]. 太阳能学报, 2022, 43(8): 510-516.
ZHAO J G, GUO H.Research on hydrogen utilization rate enhancement strategy of hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(8): 510-516.

基金

湖北省教育厅科学技术研究项目(B2022616); 湖北省教育科学规划课题(2022GB245)

PDF(2141 KB)

Accesses

Citation

Detail

段落导航
相关文章

/