弹性支撑双风轮风电机组传动链强度分析

武雅如, 朱才朝, 谭建军, 帅权, 谭术平

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 470-478.

PDF(4577 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4577 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 470-478. DOI: 10.19912/j.0254-0096.tynxb.2023-0140

弹性支撑双风轮风电机组传动链强度分析

  • 武雅如1, 朱才朝1, 谭建军1, 帅权1, 谭术平2
作者信息 +

STRENGTH ANALYSIS OF ELASTIC-SUPPORTED DOUBLE-ROTOR WIND TURBINE DRIVETRAIN

  • Wu Yaru1, Zhu Caichao1, Tan Jianjun1, Shuai Quan1, Tan Shuping2
Author information +
文章历史 +

摘要

为使前后风轮间流场干涉影响降低,双风轮风电机组传动链具有跨距长、支撑点多的特性,导致双风轮风电机组传动链在长跨距柔性主机架支撑下具有复杂的载荷特性。建立考虑主机架柔性的某型双风轮风电机组传动链动力学模型,分析齿轮与主机架结构强度。结果表明:各级齿轮接触强度、弯曲强度以及主机架强度均满足设计要求;主机架支撑变形有助于协调各构件之间的相对变形,适量减小主机架柔性有助于改善传动链承载时主轴轴承之间的轴线不对中情况。

Abstract

To reduce the interference effects of the flow field between the upwind and downwind rotor, the double-rotor wind turbine drivetrain is featured a long span and many support points, causing complex load characteristics of the double-rotor wind turbine drivetrain supported by a long-span and flexible mainframe. In the work, a dynamic model of a type of double-rotor wind turbine drivetrain is established considering the mainframe's flexibility. The structural strength of gears and the mainframe is analyzed. The results show that the contact strength and bending strength of gears as well as the structural strength of the mainframe satisfy the design requirement. The supporting deformation of the mainframe is beneficial to comply with the relative deformations between components. Reducing the mainframe's flexibility appropriately is beneficial to reduce the axial misalignments between upwind and downwind main shaft bearings when the drivetrain is loaded.

关键词

风电机组 / 传动 / 柔性结构 / 双风轮 / 强度校核

Key words

wind turbines / transmissions / flexible structure / double rotor / strength check

引用本文

导出引用
武雅如, 朱才朝, 谭建军, 帅权, 谭术平. 弹性支撑双风轮风电机组传动链强度分析[J]. 太阳能学报. 2024, 45(6): 470-478 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0140
Wu Yaru, Zhu Caichao, Tan Jianjun, Shuai Quan, Tan Shuping. STRENGTH ANALYSIS OF ELASTIC-SUPPORTED DOUBLE-ROTOR WIND TURBINE DRIVETRAIN[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 470-478 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0140
中图分类号: TK83   

参考文献

[1] SUN W, CHEN T, ZHANG X.Research on pre-controllable safety factors of a wind power gearbox transmission based on reliability optimisation design[J]. Journal of marine engineering & technology, 2012, 11: 31-37.
[2] PARK Y J, KIM J G, LEE G H, et al.Load sharing and distributed on the gear flank of wind turbine planetary gearbox[J]. Journal of mechanical science and technology, 2015, 29(1): 309-316.
[3] YOO H G, CHUNG W J, KIM B S, et al.Application of flexible pin for planetary gear set of wind turbine gearbox[J]. Scientific reports, 2022, 12: 1713.
[4] 刘华朝. 兆瓦级风电齿轮箱NVH性能分析[D]. 重庆: 重庆大学, 2016.
LIU H C.Analysis of NVH characteristics of megawatt level wind turbine gearbox[D]. Chongqing: Chongqing University, 2016.
[5] WANG L, WU F M, LYU X M, et al. A fatigue analysis method research for main frame of the large-scale wind turbine[J]. Applied mechanics and materials, 2012, 226/227/228: 995-999.
[6] PEHLIVAN A S, AKSIT M F.Fatigue analysis approach of a 500kW wind turbine main load frame[C]// 2013 International Conference on Renewable Energy Research and Applications (ICRERA). Madrid, Spain, 2013: 389-394.
[7] PEHLIVAN S A, AKSIT M.Topology optimization of a 500 kW wind turbine main load frame[C]// 4th International Conference on Power Engineering, Energy and Electrical Drives (PowerEng 2013). Istanbul, Turkey, 2013.
[8] 何章涛. MW级风力发电机组主机架系统结构分析及优化设计[D]. 重庆: 重庆大学, 2011.
HE Z T.Strcutural analysis of MW graded wind turbine mainframe system and optimization design[D]. Chongqing: Chongqing University, 2011.
[9] 孙秋云, 朱才朝, 樊志鑫, 等. 误差对风电齿轮箱轴承疲劳寿命影响[J]. 太阳能学报, 2021, 42(7): 308-315.
SUN Q Y, ZHU C C, FAN Z X, et al.Effects of error on fatigue life of bearing for wind turbine gearbox[J]. Acta energiae solaris sinica, 2021, 42(7): 308-315.
[10] 陆俊华, 朱如鹏, 靳广虎. 行星传动动态均载特性分析[J]. 机械工程学报, 2009, 45(5): 85-90.
LU J H, ZHU R P, JIN G H.Analysis of dynamic load sharing behavior in planetary gearing[J]. Journal of mechanical engineering, 2009, 45(5): 85-90.
[11] 邱育潮. 柔性销轴式风电齿轮箱行星传动均载研究[D]. 重庆: 重庆大学, 2015.
QIU Y C.Load sharing analysis of the planetary gear stage in a wind turbine gearbox with flexible pins[D].Chongqing: Chongqing University, 2015.
[12] XU L, ZHU C C, LIU H J, et al.Dynamic characteristics and experimental study on a wind turbine gearbox[J]. Journal of mechanical science and technology, 2019, 33(1): 393-402.
[13] TAN J J, ZHU C C, SONG C S, et al.Effects of flexibility and suspension configuration of mainshaft on dynamic characteristics of wind turbine drivetrain[J]. Chinese journal of mechanical engineering, 2019, 32(2): 224-238.
[14] ZHU C C, CHEN S, SONG C S, et al.Dynamic analysis of a megawatt wind turbine drive train[J]. Journal of mechanical science and technology, 2015, 29(5): 1913-1919.
[15] LAI J B, LIU Y F, XU X Y, et al.Dynamic modeling and analysis of Ravigneaux planetary gear set with unloaded floating ring gear[J]. Mechanism and machine theory, 2022, 170: 104696.
[16] 赵宇豪, 魏静, 张世界, 等. 结构柔性对大型风电机组齿轮传动系统动态响应的影响分析[J]. 太阳能学报, 2021, 42(12): 174-182.
ZHAO Y H, WEI J, ZHANG S J, et al.Study of effect of structural flexibility on dynamic characteristics of large-scale wind turbine gear transmission system[J]. Acta energiae solaris sinica, 2021, 42(12): 174-182.
[17] IEC 61400-3, An international design standard for offshore wind turbines[S].
[18] 胥良. 基于载荷谱的兆瓦级风电齿轮箱动态特性研究[D]. 重庆: 重庆大学, 2013.
XU L.Dynamic characteristics research based on load spectrum of megawatt level wind turbine gearbox[D].Chongqing: Chongqing University, 2013.
[19] ISO6336-1: 2019, Calculation of load capacity of spur and helical gears (edition2)[S].
[20] 成大先. 机械设计手册-第2卷[M]. 6版. 北京: 化学工业出版社, 2016.
CHENG D X.Handbook of mechanical design[M]. 6th ed. Beijing: Chemical Industry Press, 2016.
[21] GL2010, Guideline for the certification of wind[S].
[22] 常慧英. 风力发电机组主机架结构分析[D]. 重庆: 重庆大学, 2010.
CHANG H Y.Structural analysis of wind turbine mainframe[D]. Chongqing: Chongqing University, 2010.

基金

国家重点研发计划(2020YFB1506600); 山西省重点研发计划(202102060301017); 广东省重点研发计划(2021B0101230002)

PDF(4577 KB)

Accesses

Citation

Detail

段落导航
相关文章

/