基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究

赵洪山, 潘思潮, 吴雨晨, 马利波, 吕廷彦

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 92-101.

PDF(3242 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3242 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 92-101. DOI: 10.19912/j.0254-0096.tynxb.2023-0145

基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究

  • 赵洪山, 潘思潮, 吴雨晨, 马利波, 吕廷彦
作者信息 +

STUDY ON JOINT CONTROL OF PUMP AND RADIATOR IN PEMFC BASED ON DEEP DETERMINISTIC POLICY GRADIENT

  • Zhao Hongshan, Pan Sichao, Wu Yuchen, Ma Libo, Lyu Tingyan
Author information +
文章历史 +

摘要

针对燃料电池热管理系统中水泵和散热器的控制问题,提出一种基于深度确定性策略梯度(DDPG)的联合控制策略。该策略取代了传统控制框架中水泵和散热器的独立控制器,采用多输入多输出且可同时控制水泵冷却水流速和散热器空气流速的智能体。首先确定智能体的状态空间和动作空间,然后由控制目标设定奖励函数,最后在仿真平台上验证该算法的有效性。结果表明,所提出的联合控制策略可有效地同时控制冷却水流速和空气流速,从而提高质子交换膜燃料电池(PEMFC)的运行效率。

Abstract

Aiming at the control problems of water pump and radiator in fuel cell thermal management system, a joint control strategy based on deep deterministic policy gradient (DDPG) was proposed. This strategy replaces the independent controller of the water pump and radiator in the traditional control framework, and uses an intelligent agent with multiple inputs and multiple outputs that can simultaneously control the cooling water flow rate of the water pump and the air flow rate of the radiator. Firstly, the state space and action space of the intelligent agent are determined. Then, the reward function is set by the control goal. Finally, examples are given to verify the effectiveness of the algorithm. The results show that the proposed joint control strategy can effectively control the flow rate of cooling water and air at the same time, thereby improving the operating efficiency of PEMFC.

关键词

深度学习 / 强化学习 / 质子交换膜燃料电池 / 智能控制 / 深度确定性策略梯度

Key words

deep leaarning / reinforcement learning / proton exchange membrane fuel cells / intelligent control / deep deterministic policy gradient

引用本文

导出引用
赵洪山, 潘思潮, 吴雨晨, 马利波, 吕廷彦. 基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究[J]. 太阳能学报. 2024, 45(6): 92-101 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0145
Zhao Hongshan, Pan Sichao, Wu Yuchen, Ma Libo, Lyu Tingyan. STUDY ON JOINT CONTROL OF PUMP AND RADIATOR IN PEMFC BASED ON DEEP DETERMINISTIC POLICY GRADIENT[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 92-101 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0145
中图分类号: TM911.4    U264   

参考文献

[1] 姚健, 范伟军, 郭斌, 等. 氢燃料电池性能检测系统设计[J]. 电源技术, 2023, 47(7): 914-917.
YAO J, FAN W J, GUO B, et al.Design of hydrogen fuel cell performance test system[J]. Chinese journal of power sources, 2023, 47(7): 914-917.
[2] 沈伟, 石霖, 陈春光, 等. 多堆燃料电池系统温度模型预测控制[J]. 同济大学学报(自然科学版), 2022, 50(9): 1368-1376.
SHEN W, SHI L, CHEN C G, et al.Analysis of temperature model predictive control of a multi-stack fuel cell system[J]. Journal of Tongji University (natural science), 2022, 50(9): 1368-1376.
[3] 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30.
HOU J, YANG Z, HE T, et al.Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (science and technology), 2021, 52(1): 19-30.
[4] MA L B, ZHAO H S, QU Y H, et al.Reduced-order active disturbance rejection control method for PEMFC air intake system based on the estimation of oxygen excess ratio[J]. IET renewable power generation, 2023, 17(4): 951-963.
[5] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[6] BAROUTAJI A, WILBERFORCE T, RAMADAN M, et al.Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and sustainable energy reviews, 2019, 106: 31-40.
[7] 李勇霞, 段立强, 潘盼, 等. 基于太阳能热驱动甲烷重整制氢的燃料电池发电系统性能研究[J]. 太阳能学报, 2022, 43(9): 131-138.
LI Y X, DUAN L Q, PAN P, et al.Performance research of fuel cell power generation system based on solar thermal driven methane reforming for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(9): 131-138.
[8] 赵杰, 李文浩, 杜常清, 等. 不同操作和环境条件下的PEMFC低温冷启动数值模拟研究[J]. 太阳能学报, 2022, 43(6): 460-466.
ZHAO J, LI W H, DU C Q, et al.Numerical simulation study of low temperature cold start of PEMFC under different operating and environmental conditions[J]. Acta energiae solaris sinica, 2022, 43(6): 460-466.
[9] 徐展, 魏蔚, 许春华, 等. 面向车载深冷高压供氢系统的控制策略研究[J]. 太阳能学报, 2021, 42(5): 32-38.
XU Z, WEI W, XU C H, et al.Research on control strategy for on-board cryo-compressed hydrogen supply system[J]. Acta energiae solaris sinica, 2021, 42(5): 32-38.
[10] 金红超, 何锋, 胡耀宗. 基于变论域模糊理论的PEMFC热管理系统控制研究[J]. 电子测量技术, 2022, 45(14): 23-28.
JIN H C, HE F, HU Y Z.Thermal management system control of PEMFC based on variable universe fuzzy theory[J]. Electronic measurement technology, 2022, 45(14): 23-28.
[11] CHEN Y, PI D C, WANG B, et al.Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model[J]. Expert systems with applications, 2022, 196: 116646.
[12] 李春华, 朱新坚. 基于递归模糊神经网络的PEMFC温度控制研究[J]. 热能动力工程, 2012, 27(6): 721-725, 741-742.
LI C H, ZHU X J. Study of the temperature control of a proton exchange membrane fuel cell(PEMFC) based on a regressive fuzzy neural network[J]. Journal of engineering for thermal energy and power, 2012, 27(6): 721-725, 741-742.
[13] HU P, CAO G Y, ZHU X J, et al.Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells[J]. International journal of hydrogen energy, 2010, 35(17): 9110-9123.
[14] O'KEEFE D, EL-SHARKH M Y, TELOTTE J C, et al. Temperature dynamics and control of a water-cooled fuel cell stack[J]. Journal of power sources, 2014, 256: 470-478.
[15] LI D Z, LI C, GAO Z Q, et al.On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells[J]. Journal of power sources, 2015, 283: 452-463.
[16] 陈维荣, 牛茁, 韩喆, 等. 水冷PEMFC热管理系统流量跟随控制策略[J]. 化工学报, 2017, 68(4): 1490-1498.
CHEN W R, NIU Z, HAN Z, et al.Flow following control strategy for thermal management of water-cooled PEMFC[J]. CIESC journal, 2017, 68(4): 1490-1498.
[17] LISO V, NIELSEN M P, KÆR S K, et al. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications[J]. International journal of hydrogen energy, 2014, 39(16): 8410-8420.
[18] HUANG L H, CHEN J, LIU Z Y, et al.Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International journal of hydrogen energy, 2018, 43(25): 11550-11558.
[19] 赵洪波, 刘杰, 马彪, 等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150.
ZHAO H B, LIU J, MA B, et al.Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC journal, 2020, 71(5): 2139-2150.
[20] REN Y, CAO G Y, ZHU X J.Particle swarm optimization based predictive control of proton exchange membrane fuel cell (PEMFC)[J]. Journal of Zhejiang University-science A, 2006, 7(3): 458-462.
[21] 赵振瑞, 欧阳惠颖, 田国富, 等. 基于模糊逻辑与遗传算法的燃料电池热管理方法研究[J]. 集成技术, 2021, 10(3): 35-46.
ZHAO Z R, OUYANG H Y, TIAN G F, et al.Research on thermal management method of fuel cell based on fuzzy logic and genetic algorithm[J]. Journal of integration technology, 2021, 10(3): 35-46.
[22] YE M, WANG X, XU Y.Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization[J]. International journal of hydrogen energy, 2009, 34(2): 981-989.
[23] YUAN Z, WANG W Q, WANG H Y, et al.Parameter identification of PEMFC based on convolutional neural network optimized by balanced Deer hunting optimization algorithm[J]. Energy reports, 2020, 6: 1572-1580.
[24] 李璀璀, 易文俊, 管军, 等. 基于遗传算法的电动舵机系统模糊PID控制[J]. 兵器装备工程学报, 2021, 42(3): 162-167.
LI C C, YI W J, GUAN J, et al.Fuzzy PID control of electromechanical actuator system based on genetic algorithm[J]. Journal of ordnance equipment engineering, 2021, 42(3): 162-167.

PDF(3242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/