基于机器视觉的风电机组叶片多类型损伤检测方法研究

石腾, 许波峰, 陈鹏, 张金波, 刘加英

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 487-494.

PDF(2382 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2382 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 487-494. DOI: 10.19912/j.0254-0096.tynxb.2023-0167

基于机器视觉的风电机组叶片多类型损伤检测方法研究

  • 石腾1,2, 许波峰1,2, 陈鹏3, 张金波1, 刘加英4
作者信息 +

STUDY ON MULTI-TYPE DAMAGE DETECTION METHOD FOR WIND TURBINE BLADES BASED ON MACHINE VISION TECHNOLOGY

  • Shi Teng1,2, Xu Bofeng1,2, Chen Peng3, Zhang Jinbo1, Liu Jiaying4
Author information +
文章历史 +

摘要

为更好地推动风电机组叶片运维技术智能化发展,基于机器视觉检测技术,提出一种风电机组叶片多类型损伤检测方法。首先对智能巡检无人机平台采集到的风电机组叶片图像进行图像灰度化、滤波增强、分割以及形态学处理,实现叶片损伤区域的识别;然后基于连通域分析原理来获取叶片损伤区域的几何特征和灰度特征等参数信息,并依此设计出风电机组叶片损伤类型识别分类器;最后将检测算法和分类器融合于所设计的风电机组叶片损伤可视化检测系统。试验表明,该系统对于表皮脱落、涂层破损、砂眼、油污及裂纹等典型叶片损伤的平均检测准确率为90.4%。

Abstract

A multi-type damage detection method for wind turbine blades is proposed by machine vision detection technology to promote the intellectual development of its operation and maintenance. Firstly, the blade image from the intelligent patrol UAV platform is used to identify the blade-damaged area by graying, filtering, enhancement, segmentation, and morphological processing. Then, an identification classifier of the blade damage type is designed through the geometric features and gray feature information of the blade damage area by connected domain analysis. Finally, the detection algorithm and classifier are integrated into the wind turbine blade damage visual detection system. The results show that the average detection accuracy is 90.4% for typical blode damage such as skin peeling, coating damage, sand holes, oil stains, cracks, etc.

关键词

风电机组 / 叶片 / 机器视觉 / 损伤检测 / 多类型损伤

Key words

wind turbines / blades / machine vision / damage detection / multi-type damage

引用本文

导出引用
石腾, 许波峰, 陈鹏, 张金波, 刘加英. 基于机器视觉的风电机组叶片多类型损伤检测方法研究[J]. 太阳能学报. 2024, 45(6): 487-494 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0167
Shi Teng, Xu Bofeng, Chen Peng, Zhang Jinbo, Liu Jiaying. STUDY ON MULTI-TYPE DAMAGE DETECTION METHOD FOR WIND TURBINE BLADES BASED ON MACHINE VISION TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 487-494 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0167
中图分类号: TK83   

参考文献

[1] BENSALAH A, BARAKAT G, AMARA Y.Electrical generators for large wind turbine: trends and challenges[J]. Energies, 2022, 15(18): 6700.
[2] BAI R S, JIANG N, YU L, et al.Research on industrial online detection based on machine vision measurement system[J]. Journal of physics: conference series, 2021, 2023(1): 012052.
[3] SUN X H, GU J N, TANG S X, et al.Research progress of visual inspection technology of steel products: a review[J]. Applied sciences, 2018, 8(11): 2195.
[4] CAO W M, LIU Q F, HE Z Q.Review of pavement defect detection methods[J]. IEEE access, 2020, 8: 14531-14544.
[5] 董礼, 韩则胤, 王宁, 等. 基于深度学习算法的风电机组叶片开裂缺陷分析[J]. 计算机测量与控制, 2022, 30(8): 142-146, 154.
DONG L, HAN Z Y, WANG N, et al.Crack defect analysis of wind turbine blade based on deep learning algorithm[J]. Computer measurement & control, 2022, 30(8): 142-146, 154.
[6] WANG L, ZHANG Z J, LUO X.A two-stage data-driven approach for image-based wind turbine blade crack inspections[J]. IEEE/ASME transactions on mechatronics, 2019, 24(3): 1271-1281.
[7] 王雪平, 张建斐, 李万润, 等. 基于机器视觉的风电叶片风沙侵蚀程度检测方法研究[J]. 太阳能学报, 2020, 41(5): 166-173.
WANG X P, ZHANG J F, LI W R, et al.Study on monitoring method of wind power blades erosion severity under wind-sand storm based on machine vision technology[J]. Acta energiae solaris sinica, 2020, 41(5): 166-173.
[8] 胡世创, 魏莹玉, 周唯逸, 等. 基于图像处理的风电叶片裂纹检测系统设计[J]. 可再生能源, 2018, 36(8): 1231-1237.
HU S C, WEI Y Y, ZHOU W Y, et al.Design of crack detection system based on image processing for power wind blades[J]. Renewable energy resources, 2018, 36(8): 1231-1237.
[9] 张骏, 袁奇, 吴聪, 等. 大型风力机叶片表面粗糙度效应数值研究[J]. 中国电机工程学报, 2014, 34(20): 3384-3391.
ZHANG J, YUAN Q, WU C, et al.Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 34(20): 3384-3391.
[10] PENG C.Application of machine vision technology in intelligent manufacturing[J]. Journal of physics: conference series, 2020, 1678(1): 012031.
[11] HAI X, CAO S K, CUI S B, et al.Image filter processing algorithm analysis and comparison[J]. Journal of physics: conference series, 2021, 1820(1): 012192.
[12] LI W L, LAN Y W, ZHOU Y M.Adaptive median filtering algorithm under multi-windows in digital image processing based on automatic recognition[J]. International journal of new developments in engineering and society, 2019, 3(2): 192-197.
[13] LU P, HUANG Q J.Robotic weld image enhancement based on improved bilateral filtering and CLAHE algorithm[J]. Electronics, 2022, 11(21): 3629.
[14] YANG P, SONG W, ZHAO X B, et al.An improved Otsu threshold segmentation algorithm[J]. International journal of computational science and engineering, 2020, 22(1): 146-153.
[15] RUBAN I, KHUDOV H, MAKOVEICHUK O, et al. Methods of UAVs images segmentation based on k-means and a genetic algorithm[J]. Eastern-european journal of enterprise technologies, 2022, 4(9(118)): 30-40.
[16] 康爽, 陈长征, 刘石, 等. 基于最优多尺度集的形态学红外图像缺陷检测研究[J]. 太阳能学报, 2022, 43(6): 145-152.
KANG S, CHEN C Z, LIU S, et al.Study on defect detection of morphological infrared images based on optimal multi-scale set[J]. Acta energiae solaris sinica, 2022, 43(6): 145-152.
[17] 云赛. 基于图像处理的风力发电机叶片表面缺陷检测技术研究[D]. 天津: 天津理工大学, 2019.
YUN S.Research on surface defect detection technology of wind turbine blade based on image processing[D]. Tianjin: Tianjin University of Technology, 2019.

基金

江苏省输配电装备技术重点实验室自主科研课题(2022JSSPD07)

PDF(2382 KB)

Accesses

Citation

Detail

段落导航
相关文章

/