适用于平坦草原的近地层以上风廓线推算方法

贺园园, 程雪玲, 朱蓉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 451-460.

PDF(2308 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2308 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 451-460. DOI: 10.19912/j.0254-0096.tynxb.2023-0169

适用于平坦草原的近地层以上风廓线推算方法

  • 贺园园1,2, 程雪玲1,3, 朱蓉4
作者信息 +

METHOD OF WIND SPEED PROFILE EXTRAPOLATING FROM SURFACE OBSERVATIONS OVER FLAT GRASSLAND

  • He Yuanyuan1,2, Cheng Xueling1,3, Zhu Rong4
Author information +
文章历史 +

摘要

为得到从地面观测数据推测高层风廓线的表达式,基于锡林浩特国家气候观象台1年的观测,确定粗糙度、边界层高度和地转风计算方法,将不同稳定度的平均风廓线与建立的边界层风廓线模型计算结果进行比较。研究发现:基于再分析资料得到的地转阻力参数预测的地转风与实际地转风接近,对数风廓线在中性和不稳定情况下计算准确,且计算方法简单;Deaves-Harris模型适用于强风情况;改进混合长的Gryning模型和考虑Ekman层科氏力的两层风廓线模型在不同的稳定度情况下模拟结果均比较准确,但计算方法复杂;改进的Gryning模型适用于夜间残留层的风廓线模拟。

Abstract

To establish expressions for determining high-level wind profiles using ground-based observations, this research validated various methods to determine the roughness, boundary layer height, and geostrophic wind speed, based on 1-year of observations from the Xilinhot National Climatological Observatory. On this basis, the average wind profiles under different stability conditions were compared with the caculation results of established boundary layer wind profile models. The results demonstrated that the predicted geostrophic wind speeds based on geostrophic resistance drag parameters obtained from reanalysis data are close to the actual wind speeds. The logarithmic wind profile model can provide accuracy and simple cauculation under neutral and unstable conditions. The Deaves-Harris (DH) model was suitable for strong winds. The modified mixing-length Gryning model and the two-layer wind profile model that considers the Ekman layer Coriolis force can obtain relative accurate simulations under different stability conditions, albeit with the disadvantage of requiring complex computational procedures. The improved Gryning model is suitable for simulating wind profiles for the nocturnal residual layer.

关键词

风速 / 风能 / 稳定度 / 大气廓线 / Monin-Obukhov相似理论

Key words

wind speed / wind energy / stability / atmospheric profile / Monin-Obukhov similarity theory

引用本文

导出引用
贺园园, 程雪玲, 朱蓉. 适用于平坦草原的近地层以上风廓线推算方法[J]. 太阳能学报. 2024, 45(6): 451-460 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0169
He Yuanyuan, Cheng Xueling, Zhu Rong. METHOD OF WIND SPEED PROFILE EXTRAPOLATING FROM SURFACE OBSERVATIONS OVER FLAT GRASSLAND[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 451-460 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0169
中图分类号: P401   

参考文献

[1] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[2] LACKNER M A, ROGERS A L, MANWELL J F, et al.A new method for improved hub height mean wind speed estimates using short-term hub height data[J]. Renewable energy, 2010, 35(10): 2340-2347.
[3] 付德义, 薛扬, 边伟, 等. 风切变指数对于风电机组载荷特性影响研究[J]. 太阳能学报, 2018, 39(5): 1380-1387.
FU D Y, XUE Y, BIAN W, et al.Effects of wind shear exponents on wind turbine load characteristics[J]. Acta energiae solaris sinica, 2018, 39(5): 1380-1387.
[4] MONIN A,OBUKHOV S.Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1954, 24(151) : 163-187.
[5] GARRATT J R, WYNGAARD J C, FRANCEY R J.Winds in the atmospheric boundary layer-prediction and observation[J]. Journal of the atmospheric sciences, 1982, 39(6): 1307-1316.
[6] KENT C W, GRIMMOND C S B, GATEY D, et al. Assessing methods to extrapolate the vertical wind-speed profile from surface observations in a city centre during strong winds[J]. Journal of wind engineering and industrial aerodynamics, 2018, 173: 100-111.
[7] FLOORS R, PEÑA A, GRYNING S E. The effect of baroclinicity on the wind in the planetary boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(687): 619-630.
[8] 王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展Ⅱ:入流和尾流特性[J]. 空气动力学学报, 2022, 40(4): 22-50.
WANG T G, TIAN L L, ZHONG W, et al.Aerodynamic research progress in wind energy Ⅱ: inflow and wake characteristics[J]. Acta aerodynamica sinica, 2022, 40(4): 22-50.
[9] BAAS P,BOSVELD F C,KLEIN BALTINK H, et al.A climatology of nocturnal low-level jets at Cabauw[J]. Journal of applied meteorology and climatology, 2009, 48(8): 1627-1642.
[10] DEAVES D M.Computations of wind flow over changes in surface roughness[J]. Journal of wind engineering and industrial aerodynamics, 1981, 7(1): 65-94.
[11] GRYNING S E, BATCHVAROVA E, BRÜMMER B, et al. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer[J]. Boundary-layer meteorology, 2007, 124(2): 251-268.
[12] EMEIS S, BAUMANN-STANZER K, PIRINGER M, et al.Wind and turbulence in the urban boundary layer analysis from acoustic remote sensing data and fit to analytical relations[J]. Meteorologische zeitschrift, 2007, 16(4): 393-406.
[13] 龚玺, 朱蓉, 范广洲, 等. 内蒙古草原近地层垂直风速廓线的观测研究[J]. 气象学报, 2014, 72(4): 711-722.
GONG X, ZHU R, FAN G Z, et al.Observational study of the vertical wind profile in the Inner Mongolia grassland near-surface[J]. Acta meteorologica sinica, 2014, 72(4): 711-722.
[14] VICKERS D,MAHRT L.Quality control and flux sampling problems for tower and aircraft data[J]. Journal of atmospheric and oceanic technology, 1997, 14(3): 512-526.
[15] CHENG X L, LIU X M, LIU Y J, et al.Characteristics of CO2 concentration and flux in the Beijing urban area[J]. Journal of geophysical research: atmospheres, 2018, 123(3): 1785-1801.
[16] WILCZAK J M, ONCLEY S P, STAGE S A.Sonic anemometer tilt correction algorithms[J]. Boundary-layer meteorology, 2001, 99(1): 127-150.
[17] WEST CHRIS G, SMITH RONALD B.Global patterns of offshore wind variability[J]. Wind energy, 2021, 24(12): 1466-1481.
[18] 吉会峰, 刘吉堂, 宋心刚, 等. 基于ERA5数据的江苏海域风能资源评估[J]. 太阳能学报, 2023, 44(1): 320-324.
JI H F, LIU J T, SONG X G, et al.Evaluation of wind energy resources in Jiangsu Sea area based on ERA5 data[J]. Acta energiae solaris sinica, 2023, 44(1): 320-324.
[19] BELJAARS A C M, HOLTSLAG A A M. Flux parameterization over land surfaces for atmospheric models[J]. Journal of applied meteorology, 1991, 30(3): 327-341.
[20] PAULSON C A.The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J]. Journal of applied meteorology, 1970, 9(6): 857-861.
[21] OPTIS M, MONAHAN A, BOSVELD F C.Moving beyond Monin-Obukhov similarity theory in modelling wind-speed profiles in the lower atmospheric boundary layer under stable stratification[J]. Boundary-layer meteorology, 2014, 153(3): 497-514.
[22] DOMAGALSKI P, BARDAL L M, SÆTRAN L R. Vertical wind profiles in non-neutral conditions: comparison of models and measurements from Frøya[J]. Journal of offshore mechanics and Arctic engineering, 2019, 141(4): 041101.
[23] LI Q S, ZHI L H, HU F.Boundary layer wind structure from observations on a 325 m tower[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(12): 818-832.
[24] SUN J L.Diurnal variations of thermal roughness height over a grassland[J]. Boundary-layer meteorology, 1999, 92(3): 407-427.
[25] PEÑA A, GRYNING S E, HASAGER C B. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain[J]. Theoretical and applied climatology, 2010, 100(3/4): 325-335.
[26] ZHANG H S, ZHANG X Y, LI Q H, et al.Research progress on estimation of the atmospheric boundary layer height[J]. Journal of meteorological research, 2020, 34(3): 482-498.
[27] 杨富燕, 张宁, 朱莲芳, 等. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016, 35(4): 1102-1111.
YANG F Y, ZHANG N, ZHU L F, et al.Comparison of the mixing layer height determination methods using lidar and microwave radiometer[J]. Plateau meteorology, 2016, 35(4): 1102-1111.
[28] TENNEKES H.Similarity laws and scale relations in planetary boundary layers[C]//Proceedings of Haugen(ed) Workshop on Micrometeorology, American Meteorological Society, Boston, USA, 1973: 177-216.
[29] LIU L Q, GADDE S N, STEVENS R J A M. Geostrophic drag law for conventionally neutral atmospheric boundary layers revisited[J]. Quarterly journal of the Royal Meteorological Society, 2021, 147(735): 847-857.
[30] GIBERT F, ARNAULT N, CUESTA J, et al.Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition[J]. Quarterly journal of the Royal Meteorological Society, 2011, 137(659): 1610-1624.
[31] SMEDMAN A S, BERGSTRÖM H, HÖGSTRÖM U. Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet[J]. Boundary-layer meteorology, 1995, 76(3): 211-232.
[32] VAN DE WIEL B J H, MOENE A F, STEENEVELD G J, et al. A conceptual view on inertial oscillations and nocturnal low-level jets[J]. Journal of the atmospheric sciences, 2010, 67(8): 2679-2689.
[33] JIMÉNEZ P A, ARELLANO J V G, DUDHIA J, et al. Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration[J]. Meteorology and atmospheric physics, 2016, 128(1): 39-56.

基金

国家重点研发计划(2018YFB1501100)

PDF(2308 KB)

Accesses

Citation

Detail

段落导航
相关文章

/