海上漂浮式风电机组塔筒优化方法研究

张晨, 张保成, 张开升, 王强

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 652-660.

PDF(1956 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1956 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 652-660. DOI: 10.19912/j.0254-0096.tynxb.2023-0175

海上漂浮式风电机组塔筒优化方法研究

  • 张晨, 张保成, 张开升, 王强
作者信息 +

STUDY ON OPTIMIZATION METHOD OF OFFSHORE FLOATING WIND TURBINE TOWERS

  • Zhang Chen, Zhang Baocheng, Zhang Kaisheng, Wang Qiang
Author information +
文章历史 +

摘要

为适应复杂多变的海上环境,高效利用风资源、减少用钢成本,开展漂浮式风电机组塔筒的结构优化设计。以船载风电机组为研究对象,引入漂浮式基础的动态响应,作为影响塔筒弯曲变形的重要约束条件。在保证风电机组稳定功率输出的前提下,以质量最轻为优化目标,以塔筒构造要求和规范为基本约束条件,建立漂浮式基础风电机组塔筒的数值优化模型,并利用遗传算法完成了模型优化。结果显示,在保证风电机组稳定性和正常功率输出要求下,塔筒的质量降低了35%,刚度提高了25%。

Abstract

To adapt to the complex and changeable offshore environment, optimize the tower structure of the floating wind turbine unit to efficiently utilize wind resources and reduce steel costs. Taking a ship-mounted wind turbine as the research object, the dynamic response of the floating platform is introduced as an important constraint condition that affects the bending deformation of the tower. The numerical optimization model of the floating platform wind turbine tower is established to achieve the goal of optimizing minimum weight, with tower construction requirements and regulations as basic constraint conditions, and the genetic algorithm is used to optimize the model. The optimization results show that the optimized results reduce the mass of the tower by 35 % and increase the stiffness by 25% under the premise of ensuring stable power output.

关键词

海上风电 / 结构优化 / 质量控制 / 数值模型 / 风电机组塔筒 / 漂浮式平台

Key words

offshore wind power / structural optimization / quality control / numerical models / wind turbine tower / floating platform

引用本文

导出引用
张晨, 张保成, 张开升, 王强. 海上漂浮式风电机组塔筒优化方法研究[J]. 太阳能学报. 2024, 45(6): 652-660 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0175
Zhang Chen, Zhang Baocheng, Zhang Kaisheng, Wang Qiang. STUDY ON OPTIMIZATION METHOD OF OFFSHORE FLOATING WIND TURBINE TOWERS[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 652-660 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0175
中图分类号: P752   

参考文献

[1] 邵兴龙. 海上浮动平台风力发电塔架设计方法研究[D]. 青岛: 中国海洋大学, 2018.
SHAO X L.Study on the design method of wind turbine tower for offshore floating platform[D]. Qingdao: Ocean University of China, 2018.
[2] 王永玲. 风力发电机塔架优化设计与疲劳分析[D]. 大连: 大连理工大学, 2012.
WANG Y L.Optimization design and fatigue analysis for wind turbine tower[D]. Dalian: Dalian University of Technology, 2012.
[3] YOSHIDA S.Wind turbine tower optimization method using a genetic algorithm[J]. Wind engineering, 2006, 30(6): 453-469.
[4] TANG Y G, HU J, LIU L Q.Study on the dynamic response for floating foundation of offshore wind turbine[C]//Volume 5: Ocean Space Utilization; Ocean Renewable Energy. Rotterdam, The Netherlands, 2011: 1-5.
[5] RASMUSSEN J L, FELD T, SØRENSEN P H. Bucket foundation for offshore wind farms-comparison of Simplified Model and FE-Calculations[C]//Proceedings of OWEMES 2000, ENEA, Italy, 2000:1-12.
[6] 李兵. 新型风力发电机[J]. 可再生能源, 2005, 23(2):25-27.
LI B.New wind generator[J]. Renewable energy resources, 2005, 23(2): 25-27.
[7] 李惠萍. 船舶用小型风力发电设备[J]. 能源技术, 2000, 21(2): 102.
LI H P.Small wind power generation equipment for ships[J]. Energy technology, 2000, 21(2): 102.
[8] 朱鹏. 渔船上可持续风电供应装置设计: 以湖北省洪湖地区为例[D]. 北京: 北京理工大学, 2015.
ZHU P.Design of sustainable wind energy supply system in fisher [D]. Beijing: Beijing Institute of Technology, 2015.
[9] 段树华. 应用于船舶的自动化风力发电系统研究[J]. 舰船科学技术, 2016, 38(2): 40-42.
DUAN S H.Research on automatic wind power generation system applied to ships[J]. Ship science and technology, 2016, 38(2): 40-42.
[10] 梁宁. 新能源发电系统与船舶电力系统优化匹配研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
LIANG N.Research on optimal matching of renewable energy power generation system and ship power system[D]. Harbin: Harbin Engineering University, 2021.
[11] 李雅楠. 离岸浮动式发电系统规划与能量管控策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
LI Y N.Research on Planning and Energy Management Strategy of Offshore Floating Generation System[D]. Harbin: Harbin Engineering University, 2019.
[12] 张云龙. 风力发电技术在舰船上的应用与研究[J]. 舰船科学技术, 2016, 38(4): 58-60.
ZHANG Y L.Application and research of wind power generation technology in ship[J]. Ship science and technology, 2016, 38(4): 58-60.
[13] 胡亮. 基于有限元法的索塔式风机塔架结构优化设计与分析[D]. 宜昌: 三峡大学, 2015.
HU L.Optimal design and analysis of tower structure of cable tower fan based on finite element method[D].Yichang: China Three Gorges University, 2015.
[14] 周宏丽. 风力发电机组法兰连接系统结构分析研究[D]. 重庆: 重庆大学, 2012.
ZHOU H L.Structural analysis and research on flange connection system of wind turbine generator set[D]. Chongqing: Chongqing University, 2012. connection system on wind turbine[D]. Chongqing: Chongqing University, 2012.
[15] 麻绍钧. 船舶沿岸航行水动力数值研究[D]. 上海: 上海交通大学, 2014.
MA S J.Numerical study on hydrodynamic forces of ships sailing along the coast[D]. Shanghai: Shanghai Jiao Tong University, 2014.
[16] 姜晓昌. 基于OpenFOAM的船舶水动力性能分析[D]. 大连: 大连理工大学, 2016.
JIANG X C.Analysis of ship hydrodynamics performance with OpenFOAM[D]. Dalian: Dalian University of Technology, 2016.
[17] 胡开业. 船舶在波浪中的大幅横摇运动及其运动稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
HU K Y.Research on the large amplitude rolling and stability of a ship in waves[D]. Harbin: Harbin Engineering University, 2011.
[18] 李红霞, 唐友刚, 刘利琴, 等. 船舶随浪中参数激励非线性随机横摇运动计算[J]. 哈尔滨工程大学学报, 2007, 28(3): 247-252.
LI H X, TANG Y G, LIU L Q, et al.Simulation of the parametrically excited nonlinear rolling of ship in random following seas[J]. Journal of Harbin engineering university, 2007, 28(3): 247-252.
[19] 赵晶瑞. 经典式Spar平台非线性耦合动力响应研究[D]. 天津: 天津大学, 2010.
ZHAO J R.Study on nonlinear coupling dynamic response of a classic spar platform[D]. Tianjin: Tianjin University, 2010.
[20] 刘登成, 丁勇. 舰船在静水中非线性横摇的解析方法[J]. 船舶力学, 2009, 13(1): 41-46.
LIU D C, DING Y.Analytical method for ship nonlinear rolling in calm water[J]. Journal of ship mechanics, 2009, 13(1): 41-46.
[21] ASHWILL T D.Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration[J]. Office of Scientific & Technical Information Technical Reports, 2003.
[22] 杨波. 随机脉动风场的数值模拟[D]. 兰州: 兰州大学, 2016.
YANG B.Numerical simulation of random fluctuating wind field[D].Lanzhou: Lanzhou University, 2016.
[23] 吴红华, 徐阳, 呼腊梅, 等. 近地面脉动风速时程的分形模拟研究[J]. 地震工程与工程振动, 2015, 35(4): 121-129.
WU H H, XU Y, HU L M, et al.Research on fractal simulation of subsurface fluctuating wind speed time-history[J]. Earthquake engineering and engineering dynamics, 2015, 35(4): 121-129.
[24] 张相庭. 结构风压和风振计算[M]. 上海: 同济大学出版社, 1985.
ZHANG X T.Calculation of structural wind pressure and wind vibration[M]. Shanghai: Tongji University Press, 1985.
[25] 张红星, 叶丰, 顾明. 顺风向脉动风速及风压相干性的试验研究[C]// 全国振动理论及应用学术会议, 2003.
ZHANG H X, YE F, GU M.Experimental investigation on coherence characteristics of along-wind fluctuating wind velocity and wind pressure[C]//National Academic Conference on Vibration Theory and Application, 2003.
[26] 张冬兵, 梁枢果, 韩银全, 等. 高层建筑风场的脉动风速时程模拟[J]. 兰州理工大学学报, 2008, 34(3): 127-130.
ZHANG D B, LIANG S G, HAN Y Q, et al.Simulation of time history of turbulent wind speed in wind field around high-rises[J]. Journal of Lanzhou University of Technology, 2008, 34(3): 127-130.
[27] 孙毅, 李正良, 黄汉杰, 等. 山地风场平均及脉动风速特性试验研究[J]. 空气动力学学报, 2011, 29(5): 593-599.
SUN Y, LI Z L, HUANG H J, et al.Experimental research on mean and fluctuating wind velocity in hilly terrain wind field[J]. Acta aerodynamica sinica, 2011, 29(5): 593-599.
[28] 李锦华, 李春祥, 申建红. 非平稳脉动风速的数值模拟[J]. 振动与冲击, 2009, 28(1): 18-23, 192.
LI J H, LI C X, SHEN J H.Numerical simulation of non-stationary fluctuating wind velocity[J]. Journal of vibration and shock, 2009, 28(1): 18-23, 192.
[29] 陈贤川. 大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D]. 杭州: 浙江大学, 2005.
CHEN X C.Theoretical study and application of wind-induced response and equivalent wind load of long-span roof structures[D].Hangzhou: Zhejiang University, 2005.
[30] WU Q L, YU H F, CHEN X X.Service life prediction method of concretes based on mass loss rate: establishment and narration of mathematical model[C]//ICCTP 2010. Beijing, China, 2010: 3253-3260.

基金

青岛市科技发展计划(18-1-2-20-zhc)

PDF(1956 KB)

Accesses

Citation

Detail

段落导航
相关文章

/