基于模型预测控制的高比例可再生能源电力系统多时间尺度动态可靠优化调度

罗政杰, 任惠, 辛国雨, 卢锦玲, 王飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 150-160.

PDF(2029 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2029 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 150-160. DOI: 10.19912/j.0254-0096.tynxb.2023-0177

基于模型预测控制的高比例可再生能源电力系统多时间尺度动态可靠优化调度

  • 罗政杰1, 任惠1, 辛国雨2, 卢锦玲1, 王飞1
作者信息 +

MULTI-TIME SCALE DYNAMIC RELIABLE OPTIMAL SCHEDULING OF POWER SYSTEM WITH HIGH PROPOTTION RENEWABLE ENERGY BASED ON MODEL PREDICTIVE CONTROL

  • Luo Zhengjie1, Ren Hui1, Xin Guoyu2, Lu Jinling1, Wang Fei1
Author information +
文章历史 +

摘要

提出基于模型预测控制的高比例可再生能源电力系统多时间尺度动态可靠优化调度方法,通过日前优化调度、日内滚动优化、运行风险计算及反馈校正几个环节,对可再生能源发电和系统内可调资源进行最优调度。日内实时调度阶段,基于日前调度计划和实时运行状况,采用回归预测算法,自适应选择重要变量预测系统未来运行状态,通过吉布斯抽样得到关键变量的概率密度,快速量化系统下一时刻的运行风险,并将风险反馈至日内滚动优化阶段,重复进行可靠优化调度。仿真算例结果验证所提方法的适应性和可行性。

Abstract

The ouput uncertainty of renewable generation and the fluctuation of load require integrated risk evaluation and optimal scheduling based on the real-time operation state of the system. Through the timely warning of the operational risk and adjusting the current control strategy accordingly, the safety and economy of power grid operation is coordinated and ensured. This paper presents a multi-time scale dynamic reliable optimal dispatch method for high proportion renewable energy power systems based on Model Predictive Control. The reliable optimal dispatch of electric system with high share of renewables is carried out through day ahead predictive optimal dispatching, day rolling optimal regulation, operation risk assessment and feedback correction of renewable generations and adjustable resources in the system. In the intra-day stage, based on the day ahead scheduling plan and real-time operation status, regression prediction algorithm is used to adaptively select key variables to predict the future operation status of the system. The probability density of representative variable is obtained through Gibbs sampling, which can quickly quantify the operation risk of the system at the next moment. The risk is then feedback to the day rolling optimal regulation to perform repeated reliable optimal scheduling. The simulation results verify the adaptability and feasibility of the proposed method.

关键词

模型预测控制 / 可再生能源 / 多时间尺度 / 动态可靠优化调度 / 回归预测

Key words

model predictive control / renewable energy / multi-time scale / dynamic reliable optimal scheduling / regression prediction

引用本文

导出引用
罗政杰, 任惠, 辛国雨, 卢锦玲, 王飞. 基于模型预测控制的高比例可再生能源电力系统多时间尺度动态可靠优化调度[J]. 太阳能学报. 2024, 45(6): 150-160 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0177
Luo Zhengjie, Ren Hui, Xin Guoyu, Lu Jinling, Wang Fei. MULTI-TIME SCALE DYNAMIC RELIABLE OPTIMAL SCHEDULING OF POWER SYSTEM WITH HIGH PROPOTTION RENEWABLE ENERGY BASED ON MODEL PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 150-160 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0177
中图分类号: TM73   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[3] 张大海, 贠韫韵, 王小君, 等. 计及风光不确定性的新能源虚拟电厂多时间尺度优化调度[J]. 太阳能学报, 2022, 43(11): 529-537.
ZHANG D H, YUN Y Y, WANG X J, et al.Multi-time scale of new energy scheduling optimization for virtual power plant considering uncertainty of wind power and photovoltaic power[J]. Acta energiae solaris sinica, 2022, 43(11): 529-537.
[4] 王磊, 王昭, 冯斌, 等. 基于双层优化模型的风-光-储互补发电系统优化配置[J]. 太阳能学报, 2022, 43(5): 98-104.
WANG L, WANG Z, FENG B, et al.Optimal configuration of wind-photovoltaic-ess complementary power generation system based on bi-level optimization model[J]. Acta energiae solaris sinica, 2022, 43(5): 98-104.
[5] 王振浩, 许京剑, 田春光, 等. 计及碳交易成本的含风电电力系统热电联合调度[J]. 太阳能学报, 2020, 41(12): 245-253.
WANG Z H, XU J J, TIAN C G, et al.Combined heat and power scheduling strategy considering carbon trading cost in wind power system[J]. Acta energiae solaris sinica, 2020, 41(12): 245-253.
[6] TELUKUNTA V, PRADHAN J, AGRAWAL A, et al.Protection challenges under bulk penetration of renewable energy resources in power systems: a review[J]. CSEE journal of power and energy systems, 2017, 3(4): 365-379.
[7] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[8] MEHDIZADEH M, GHAZI R, GHAYENI M.Power system security assessment with high wind penetration using the farms models based on their correlation[J]. IET renewable power generation, 2018, 12(8): 893-900.
[9] NEGNEVITSKY M, NGUYEN D H, PIEKUTOWSKI M.Risk assessment for power system operation planning with high wind power penetration[J]. IEEE transactions on power systems, 2015, 30(3): 1359-1368.
[10] CHEN L, WU X D, WU J, et al.Risk assessment method for combined air storage system based on wind power uncertainty[C]//2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). Vientiane, Laos, 2020: 458-462.
[11] POURAHMADI F, HEIDARABADI H, HOSSEINI S H, et al.Dynamic uncertainty set characterization for bulk power grid flexibility assessment[J]. IEEE systems journal, 2020, 14(1): 718-728.
[12] 马燕峰, 杨小款, 王子建, 等. 基于风险价值的大规模风电并网电力系统运行风险评估[J]. 电网技术, 2021, 45(3): 849-855.
MA Y F, YANG X K, WANG Z J, et al.Operation risk assessment for power system with large-scale wind power integration based on value at risk[J]. Power system technology, 2021, 45(3): 849-855.
[13] 刘自发, 张婷, 王岩. 基于模型预测控制的主动配电网多场景变时间尺度优化调度[J]. 电力自动化设备, 2022, 42(4): 121-128.
LIU Z F, ZHANG T, WANG Y.Multi-scenario variable time scale optimal scheduling of active distribution network based on model predictive control[J]. Electric power automation equipment, 2022, 42(4): 121-128.
[14] 董雷, 陈卉, 蒲天骄, 等. 基于模型预测控制的主动配电网多时间尺度动态优化调度[J]. 中国电机工程学报, 2016, 36(17): 4609-4617.
DONG L, CHEN H, PU T J, et al.Multi-time scale dynamic optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2016, 36(17): 4609-4617.
[15] GUO Y, BAKER K, DALL'ANESE E, et al. Data-based distributionally robust stochastic optimal power flow—part II: case studies[J]. IEEE transactions on power systems, 2019, 34(2): 1493-1503.
[16] XING X W,XIE L L,MENG H M.Cooperative energy management optimization based on distributed MPC in grid-connected microgrids community[J]. International journal of electrical power & energy systems, 2019, 107:186-199.
[17] GUO Y F, WU Q W, GAO H L, et al.MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system[J]. IEEE transactions on sustainable energy, 2019, 10(4): 1731-1739.
[18] LI W H, CHI Y N, WU Q W, et al.Research on an MPC-based voltage control strategy for renewable energy bases with different topologies[C]//2020 IEEE/IAS Industrial and Commercial Power System Asia(I&CPS Asia).Weihai, China, 2020: 1320-1324.
[19] 任佳依, 顾伟, 王勇, 等. 基于模型预测控制的主动配电网多时间尺度有功无功协调调度[J]. 中国电机工程学报, 2018, 38(5): 1397-1407.
REN J Y, GU W, WANG Y, et al.Multi-time scale active and reactive power coordinated optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2018, 38(5): 1397-1407.
[20] 高聪哲, 黄文焘, 余墨多, 等. 基于智能软开关的主动配电网电压模型预测控制优化方法[J]. 电工技术学报, 2022, 37(13): 3263-3274.
GAO C Z, HUANG W T, YU M D, et al.A model predictive control method to optimize voltages for active distribution networks with soft open point[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3263-3274.
[21] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037.
YAN X W, XU Y, LI R J, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037.

PDF(2029 KB)

Accesses

Citation

Detail

段落导航
相关文章

/