SANISAND本构模型对不同荷载下桩土相互作用的适用性研究

孟晓伟, 翟恩地, 许成顺

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 619-627.

PDF(3238 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3238 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 619-627. DOI: 10.19912/j.0254-0096.tynxb.2023-0178

SANISAND本构模型对不同荷载下桩土相互作用的适用性研究

  • 孟晓伟1, 翟恩地1,2, 许成顺1
作者信息 +

RESEARCH ON APPLICABILITY OF SANISAND CONSTITUTIVE MODEL TO PILE-SOIL INTERACTION UNDER DIFFERENT LOADS

  • Meng Xiaowei1, Endi Zhai1,2, Xu Chengshun1
Author information +
文章历史 +

摘要

该文通过土体三轴试验数据确定本构参数,并建立场地试验和离心机试验的有限元模型,研究SANISAND本构模型对于静力、地震和循环荷载下桩土相互作用的适用性。结果表明,SANISAND本构模型能较好再现水平静力荷载下不同桩径的桩顶荷载-位移特性,地震作用下加速度和孔压时程曲线变化趋势以及短期循环水平荷载下的桩变形特性,但无法较好地再现砂土由于剪胀引起的孔压负峰值和长期循环荷载下的累积变形,所以主要关注这些问题时建议选择更合适的本构模型。

Abstract

In this paper, the constitutive parameters are determined based on the triaxial test data, and the finite element model of the field test and the centrifuge test is established. The applicability of the SANISAND constitutive model to pile-soil interaction under static, seismic, and cyclic loads is investigated in order to provide a reference for its engineering design application. The results indicate that the SANISAND constitutive model can well reproduce the pile top load-displacement characteristics of different pile diameters under horizontal static loads, the variation trend of acceleration and pore pressure time history curves under earthquakes, and the pile deformation performance under short-term cyclic horizontal loads. However, it is not possible to accurately reproduce the negative peak pore pressure caused by dilatation as well as the cumulative deformation under long-term cyclic loads.

关键词

海上风电 / 单桩基础 / 本构模型 / 循环荷载 / 地震

Key words

offshore wind turbine / monopile foundations / constitutive models / cyclic loading / earthquake

引用本文

导出引用
孟晓伟, 翟恩地, 许成顺. SANISAND本构模型对不同荷载下桩土相互作用的适用性研究[J]. 太阳能学报. 2024, 45(6): 619-627 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0178
Meng Xiaowei, Endi Zhai, Xu Chengshun. RESEARCH ON APPLICABILITY OF SANISAND CONSTITUTIVE MODEL TO PILE-SOIL INTERACTION UNDER DIFFERENT LOADS[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 619-627 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0178
中图分类号: TU44   

参考文献

[1] 姜焱培, 王伟, 罗仑博, 等. 考虑桩周土体的海上风电大直径单桩变径体系1阶频率研究[J]. 太阳能学报, 2019, 40(5): 1433-1440.
JIANG Y P, WANG W, LUO L B, et al.Study on 1st order frequency of offshore wind turbines large diameter monopile of variable diameter system considering soil around monopile[J]. Acta energiae solaris sinica, 2019, 40(5): 1433-1440.
[2] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[3] 罗仑博, 王媛, 黄景琦, 等. 海洋循环荷载对吸力桶基础水平承载力的影响研究[J]. 太阳能学报, 2021, 42(3): 142-147.
LUO L B, WANG Y, HUANG J Q, et al.Study on effects of cyclic loading on lateral capacity of suction bucket foundations[J]. Acta energiae solaris sinica, 2021, 42(3): 142-147.
[4] 张浦阳, 冯嘉成, 李响亮, 等. 土质对三筒吸力桩导管架基础水平承载特性的影响[J]. 太阳能学报, 2023, 44(4): 189-194.
ZHANG P Y, FENG J C, LI X L, et al.Influence of different soil on horizontal bearing characteristics of tripod suction jucket foundations[J]. Acta energiae solaris sinica, 2023, 44(4): 189-194.
[5] LEBLANC C, HOULSBY G, BYRNE B.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
[6] CUÉLLAR P, MIRA P, PASTOR M, et al. A numerical model for the transient analysis of offshore foundations under cyclic loading[J]. Computers and geotechnics, 2014, 59: 75-86.
[7] DAFALIAS Y F, MANZARI M T.Simple plasticity sand model accounting for fabric change effects[J]. Journal of engineering mechanics, 2004, 130(6): 622-634.
[8] SHAHIR H, PAK A.Estimating liquefaction-induced settlement of shallow foundations by numerical approach[J]. Computers and geotechnics, 2010, 37(3): 267-279.
[9] RAHMANI A, PAK A.Dynamic behavior of pile foundations under cyclic loading in liquefiable soils[J]. Computers and geotechnics, 2012, 40: 114-126.
[10] RAHMANI A, FARE O G, PAK A.Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon[J]. Scientia iranica, 2012, 19(2): 179-187.
[11] SHAHIR H, PAK A, TAIEBAT M, et al.Evaluation of variation of permeability in liquefiable soil under earthquake loading[J]. Computers and geotechnics, 2012, 40: 74-88.
[12] CHENG Z, JEREMIĆ B.Numerical modeling and simulation of pile in liquefiable soil[J]. Soil dynamics and earthquake engineering, 2009, 29(11/12): 1405-1416.
[13] ESFEH P K, KAYNIA A M.Numerical modeling of liquefaction and its impact on anchor piles for floating offshore structures[J]. Soil dynamics and earthquake engineering, 2019, 127: 105839.
[14] ESFEH P K, KAYNIA A M.Earthquake response of monopiles and caissons for offshore wind turbines founded in liquefiable soil[J]. Soil dynamics and earthquake engineering, 2020, 136: 106213.
[15] KEMENTZETZIDIS E, VERSTEIJLEN W G, NERNHEIM A, et al.3D FE dynamic modelling of offshore wind turbines in sand: natural frequency evolution in the pre-to after-storm transition[M]. Boca Raton: CRC Press, 2018: 1477-1484.
[16] KEMENTZETZIDIS E, CORCIULO S, VERSTEIJLEN W G, et al.Geotechnical aspects of offshore wind turbine dynamics from 3D non-linear soil-structure simulations[J]. Soil dynamyics earthquake engineering, 2019, 120: 181-199.
[17] VACAREANU V, KEMENTZETZIDIS E, PISANO F.3D FE seismic analysis of a monopile-supported offshore wind turbine in a non-liquefiable soil deposit[C]//Proceedings of the 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC2019). Chania, Greece, 2019.
[18] 吴则祥, 陈佳莹, 尹振宇. 考虑各向异性及循环效应的SIMSAND模型及应用[J]. 岩石力学与工程学报, 2021, 40(10): 2113-2123.
WU Z X, CHEN J Y, YIN Z Y.A SIMSAND model considering anisotropy and dynamic effects and its application[J]. Chinese journal of rock mechanics and engineering, 2021, 40(10): 2113-2123.
[19] 周晓洁, 李娜, 卢力强, 等. 水平循环荷载下大直径单桩承载变形特性有限元分析[J]. 防灾减灾工程学报, 2021, 41(6): 1279-1286.
ZHOU X J, LI N, LU L Q, et al.Finite element analysis on bearing and deformation behaviors for Large-diameter monopile under lateral cyclic loads[J]. Journal of disaster prevention and mitigation engineering, 2021, 41(6): 1279-1286.
[20] 凌薇宇, 许成顺, 孙毅龙, 等. 地震与水平环境荷载下风电单桩基础动力响应分析[J]. 地震工程与工程振动, 2023, 43(1): 63-76.
LING W Y, XU C S, SUN Y L, et al.Analysis on dynamic response of monopile under combined action of seismic load and horizontal environmental load[J]. Earthquake engineering and engineering dynamics, 2023, 43(1): 63-76.
[21] TABORDA D M G, ZDRAVKOVIĆ L, POTTS D M, et al. Finite-element modelling of laterally loaded piles in a dense marine sand at Dunkirk[J]. Géotechnique, 2020, 70(11): 1014-1029.
[22] WILSON D W, BOULANGER R W, KUTTER B L.Observed seismic lateral resistance of liquefying sand[J]. Journal of geotechnical and geoenvironmental engineering, 2000, 126(10): 898-906.
[23] GEROLYMOS N, ESCOFFIER S, GAZETAS G, et al.Numerical modeling of centrifuge cyclic lateral pile load experiments[J]. Earthquake engineering and engineering vibration, 2009, 8(1): 61-76.
[24] KLINKVORT R T, LETH C T, HEDEDAL O.Centrifuge modelling of a laterally cyclic loaded pile[M]. Boca Raton: CRC Press, 2010: 983-988.
[25] ZDRAVKOVIĆ L, JARDINE R J, TABORDA D M G, et al. Ground characterisation for PISA pile testing and analysis[J]. Géotechnique, 2020, 70(11): 945-960.
[26] TAIEBAT M, JEREMIÍC B, DAFALIAS Y F, et al. Propagation of seismic waves through liquefied soils[J]. Soil dynamics and earthquake engineering, 2010, 30(4): 236-257.
[27] ARULMOLI K.VELACS: verification of liquefaction analyses by centrifuge studies, laboratory testing program [R]. Soil Data Report, 1992.
[28] BOULANGER R W, WILSON D W, KUTTER B L, et al.Soil-pile-superstructure interaction in liquefiable sand[J]. Transportation research record: journal of the transportation research board, 1997, 1569(1): 55-64.
[29] YANG M, TAIEBAT M, DAFALIAS Y F.SANISAND-MSf: a sand plasticity model with memory surface and semifluidised state[J]. Géotechnique, 2022, 72(3): 227-246.
[30] LIU H Y, DIAMBRA A, ABELL J, et al.Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading[J]. Journal of geotechnical and geoenvironmental engineering, 2020, 146: 04020122.
[31] LIU H Y, KAYNIA A M.Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu[J]. Water science and engineering, 2022, 15(1): 69-77.
[32] LATINI C.Numerical modelling of offshore foundations for jacket structures[D]. Denmark: Technical University of Denmark, 2018.
[33] LETH C T.Centrifuge modelling of large diameter pile in sand subject to lateral loading [D]. Denmark: Technical University of Denmark, 2011.
[34] HOULSBY G T, ABADIE C N, BEUCKELAERS W J A P, et al. A model for nonlinear hysteretic and ratcheting behaviour[J]. International journal of solids and structures, 2017, 120: 67-80.
[35] LIU H Y, ABELL J A, DIAMBRA A, et al.Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity[J]. Géotechnique, 2019, 69(9): 783-800.
[36] LIU H Y, KEMENTZETZIDIS E, ABELL J A, et al.From cyclic sand ratcheting to tilt accumulation of offshore monopiles: 3D FE modelling using SANISAND-MS[J]. Géotechnique, 2022, 72(9): 753-768.
[37] KLINKVORT R T, HEDEDAL O.Lateral response of monopile supporting an offshore wind turbine[J]. Proceedings of the institution of civil engineers: geotechnical engineering, 2013, 166(2): 147-158.

PDF(3238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/