搭建光伏系统串联型电弧实验平台,采集不同环境下50组电弧数据,提取出频域及小波域的能量特征与熵特征,绘制特征的分布情况。通过引入区分度对18种特征进行区分能力评价,评价结果表明,10~30 kHz频谱能量对电弧的区分能力最佳,对电弧状态与正常状态的区分度达到98.49%。研究逆变器启动、太阳辐照度变化及不同环境对特征的影响,分析10~30 kHz频谱能量在光伏系统中的抗扰能力。制作串联型电弧检测装置并提出其阈值的设定及推广方法,装置在多次实验中均可准确检测并迅速熄灭电弧,且在抗扰性实验中未发生误动作,动作时间可达到41 ms。
Abstract
In this paper, a series arc experiment platform for photovoltaic system is built, 50 sets of arc data under different environments are collected, energy characteristics and entropy characteristics in frequency domain and wavelet domain are extracted, and the distribution of characteristics is drawn. The discrimination ability of 18 features is evaluated by introducing the discrimination degree. The evaluation result shows that the 10-30 kHz spectrum energy has the best discrimination ability to the arc, and the discrimination degree between the arc state and the normal state reaches 98.49%. The influence of inverter startup, light intensity change and different environment on characteristics is studied, and the anti-interference ability of 10-30 kHz spectrum energy in photovoltaic system is analyzed. A series arc detection device is made and its threshold setting and promotion method are proposed. The device can accurately detect and quickly extinguish the arc in many experiments, and there is no misoperation in the immunity experiment. The action time can reach 41 ms.
关键词
光伏系统 /
串联电弧 /
电弧检测 /
特征提取 /
抗扰性分析 /
装置研制
Key words
photovoltaic system /
series arc /
arc detection /
feature extraction /
anti-interference analysis /
energy entropy /
device development
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴春华, 徐文新, 李智华, 等. 光伏系统直流侧故障电弧危害分析及保护策略[J]. 太阳能学报, 2020, 41(9): 198-206.
WU C H, XU W X, LI Z H, et al.DC arc-fault hazards analysis and protection in photovoltaic system[J]. Acta energiae solaris sinica, 2020, 41(9): 198-206.
[2] 熊庆, 陈维江, 汲胜昌, 等. 低压直流系统故障电弧特性、检测和定位方法研究进展综述[J]. 中国电机工程学报, 2020, 40(18): 6015-6026.
XIONG Q, CHEN W J, JI S C, et al.Review of research progress on characteristics, detection and localization approaches of fault arc in low voltage DC system[J]. Proceedings of the CSEE, 2020, 40(18): 6015-6026.
[3] YAO X, JI S C, HERRERA L, et al.DC arc fault: characteristic study and fault recognition[C]//2011 1st International Conference on Electric Power Equipment-Switching Technology. Xi'an, China, 2011: 387-390.
[4] 林方圆. 光伏系统直流故障电弧特征及识别方法研究[D]. 合肥: 合肥工业大学, 2015.
LIN F Y.Study on the feature and detection method of DC arc fault in the PV systems[D]. Hefei: Hefei University of Technology, 2015.
[5] 王尧, 李阳, 葛磊蛟, 等. 基于滑动离散傅里叶变换的串联直流电弧故障识别[J]. 电工技术学报, 2017, 32(19): 118-124.
WANG Y, LI Y, GE L J, et al.A series DC arcing fault recognition method based on sliding discrete Fourier transform[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 118-124.
[6] 邸振国, 熊庆, 张琛, 等. 基于加权差分电流的直流故障电弧检测方法[J]. 西安交通大学学报, 2022, 56(5): 141-148.
DI Z G, XIONG Q, ZHANG C, et al.DC arc fault detection method based on weighted differential current[J]. Journal of Xi'an Jiaotong University, 2022, 56(5): 141-148.
[7] 刘璇, 熊兰, 王韵, 等. 光伏电站串联型直流电弧的检测算法与保护实验研究[J]. 太阳能学报, 2022, 43(1): 348-355.
LIU X, XIONG L, WANG Y, et al.Experimental study on detection algorithm and protection of DC series arc in photovoltaic station[J]. Acta energiae solaris sinica, 2022, 43(1): 348-355.
[8] YAO X, HERRERA L, JI S C, et al.Characteristic study and time-domain discrete- wavelet-transform based hybrid detection of series DC arc faults[J]. IEEE transactions on power electronics, 2014, 29(6): 3103-3115.
[9] 吴春华, 徐文新, 李智华, 等. 光伏系统直流侧故障电弧类型辨识及电路保护[J]. 中国电机工程学报, 2017, 37(17): 5028-5036.
WU C H, XU W X, LI Z H, et al.Arc fault type identification and circuit protection in photovoltaic system[J]. Proceedings of the CSEE, 2017, 37(17): 5028-5036.
[10] 唐圣学, 刁旭东, 陈丽, 等. 光伏发电系统直流串联微弱故障电弧检测方法研究[J]. 仪器仪表学报, 2021, 42(3): 150-160.
TANG S X, DIAO X D, CHEN L, et al.Study on detection method of weak series DC fault arc in PV power generation systems[J]. Chinese journal of scientific instrument, 2021, 42(3): 150-160.
[11] 陈伟根, 谢波, 龙震泽, 等. 基于小波包能量熵的油纸绝缘气隙放电阶段识别[J]. 中国电机工程学报, 2016, 36(2): 563-569.
CHEN W G, XIE B, LONG Z Z, et al.Stage identification in air-gap discharge of oil-impregnated paper insulation based on wavelet packet energy entropy[J]. Proceedings of the CSEE, 2016, 36(2): 563-569.
[12] 吴春华, 黄宵宵, 李智华, 等. 光伏系统直流微弱电弧信号检测研究[J]. 中国电机工程学报, 2019, 39(20): 6025-6033.
WU C H, HUANG X X, LI Z H, et al.Research on DC weak arc signal detection in photovoltaic system[J]. Proceedings of the CSEE, 2019, 39(20): 6025-6033.
[13] 牟龙华, 王伊健, 蒋伟, 等. 光伏系统直流电弧故障特征及检测方法研究[J]. 中国电机工程学报, 2016, 36(19): 5236-5244.
MU L H, WANG Y J, JIANG W, et al.Study on characteristics and detection method of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2016, 36(19): 5236-5244.
[14] 刘晓明, 赵洋, 曹云东, 等. 基于小波变换的交流系统串联电弧故障诊断[J]. 电工技术学报, 2014, 29(1): 10-17.
LIU X M, ZHAO Y, CAO Y D, et al.Series arc fault diagnosis based on wavelet transform in AC system[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 10-17.
基金
上海市科委科技计划(20DZ1206100); 上海市科委科技计划(21DZ1207300)