异构能源系统模块化建模及控制策略研究

胡帆, 董文杰, 周小光, 吴任博, 毕燕雷

太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 161-170.

PDF(2307 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2307 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (6) : 161-170. DOI: 10.19912/j.0254-0096.tynxb.2023-0184

异构能源系统模块化建模及控制策略研究

  • 胡帆1, 董文杰2, 周小光1, 吴任博1, 毕燕雷2
作者信息 +

RESEARCH ON MODULAR MODELING AND CONTROL STRATEGY OF HETEROGENEOUS ENERGY SYSTEM

  • Hu Fan1, Dong Wenjie2, Zhou Xiaoguang1, Wu Renbo1, Bi Yanlei2
Author information +
文章历史 +

摘要

基于模块化思想提出一种新型异构能源系统建模方法,并设计了相应控制策略。其中,综合考虑光伏发电、热电联产、储能技术,以混合逻辑动态系统表示方法建立异构能源系统模型;针对投资、运行和维护成本优化,构建模型预测控制策略。该文所提策略中考虑了异构能源系统与上游能源系统之间的能源交易、系统非线性或混合系统行为。通过将所提策略与传统控制策略进行比较,分析不同用户行为、不断变化的气候条件和预测误差对节能潜力的影响。算例分析结果表明:所提方法可有效利用可变的清洁能源和储能技术来优化异构能源系统的运营,每年可节省3%~6%的成本。

Abstract

The sources of energy supply and demand within heterogeneous energy systems are complex, so the conventional methods cannot build a generic model connecting different energy networks. To this end, a novel modeling approach for heterogeneous energy systems is proposed based on the modularity idea, and a corresponding control strategy is designed for them. Among them, a heterogeneous energy system model is established with a hybrid logic dynamic system representation considering photovoltaic power generation, cogeneration and energy storage technologies; a model predictive control strategy is constructed for optimizing investment, operation and maintenance cost. In the proposed strategy, energy trading, system nonlinearity or hybrid system behavior between heterogeneous energy systems and upstream energy systems are considered. The impacts of different user behaviors, changing climate conditions and prediction errors on the energy saving potential are analyzed by comparing it with traditional control strategies. The results of the algorithm analysis show that the proposed approach can effectively utilize variable clean energy and energy storage technologies to optimize the operation of heterogeneous energy systems, with annual cost savings of 3% to 6%.

关键词

可再生能源 / 优化调度 / 电池储能 / 异构能源系统 / 成本优化

Key words

renewable energy / optimal scheduling / battery energy storage / heterogeneous energy system / cost optimization

引用本文

导出引用
胡帆, 董文杰, 周小光, 吴任博, 毕燕雷. 异构能源系统模块化建模及控制策略研究[J]. 太阳能学报. 2024, 45(6): 161-170 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0184
Hu Fan, Dong Wenjie, Zhou Xiaoguang, Wu Renbo, Bi Yanlei. RESEARCH ON MODULAR MODELING AND CONTROL STRATEGY OF HETEROGENEOUS ENERGY SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 161-170 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0184
中图分类号: TK01   

参考文献

[1] 董旭柱, 华祝虎, 尚磊, 等. 新型配电系统形态特征与技术展望[J]. 高电压技术, 2021, 47(9): 3021-3035.
DONG X Z, HUA Z H, SHANG L, et al.Morphological characteristics and technology prospect of new distribution system[J]. High voltage engineering, 2021, 47(9): 3021-3035.
[2] 孙鹏, 滕云, 回茜, 等. 考虑异质能流输运特性的多能源系统惯量极限优化[J]. 中国电机工程学报, 2022, 42(10): 3642-3656.
SUN P, TENG Y, HUI Q, et al.Inertia limit optimization of multi-energy system considering the transport characteristics of heterogeneous energy flow[J]. Proceedings of the CSEE, 2022, 42(10): 3642-3656.
[3] 司徒友, 周立德, 陈凤超, 等. 基于典型场景集的智能园区多能源微网多目标配置优化研究[J]. 太阳能学报, 2022, 43(9): 515-526.
SITU Y, ZHOU L D, CHEN F C, et al.Research on configuration of multi-energy microgrid in smart park based on typical scenarios[J]. Acta energiae solaris sinica, 2022, 43(9): 515-526.
[4] 刘仙萍, 田东, 雷豫豪, 等. 光伏/光热-地源热泵联合供热系统运行性能研究[J]. 太阳能学报, 2022, 43(9): 88-97.
LIU X P, TIAN D, LEI Y H, et al.Performance analysis for solar photovoltaic/thermalground source heat pump hybrid heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 88-97.
[5] ZHU M T, XU C S, DONG S F, et al.An integrated multi-energy flow calculation method for electricity-gas-thermal integrated energy systems[J]. Protection and control of modern power systems, 2021, 6(1): 1-12.
[6] 吴彪, 张少华, 王晛, 等. 多能源市场环境下综合能源服务商的需求响应策略研究[J]. 电网技术, 2022, 46(5): 1800-1811.
WU B, ZHANG S H, WANG X, et al.Equilibrium strategy analysis of demand response for integrated energy service provider participating in multi-energy market transaction[J]. Power system technology, 2022, 46(5): 1800-1811.
[7] 何帅, 刘念, 盛超群, 等. 多能源枢纽联合运行的㶲损最小化分布式优化调度[J]. 电力系统自动化, 2021, 45(9): 28-37.
HE S, LIU N, SHENG C Q, et al.Distributed optimal scheduling for minimizing exergy loss based on joint operation of multiple energy hubs[J]. Automation of electric power systems, 2021, 45(9): 28-37.
[8] ZHANG M L, ZHANG N, GUAN D J, et al.Optimal design and operation of regional multi-energy systems with high renewable penetration considering reliability constraints[J]. IEEE access, 2020, 8: 205307-205315.
[9] 彭维珂, 李童宇, 武浩然, 等. 基于医疗垃圾等离子气化的零碳高效热电联产系统性能分析[J]. 中国电机工程学报, 2022, 42(9): 3135-3151.
PENG W K, LI T Y, WU H R, et al.Performance assessment of a zero-carbon emission waste-to-energy CHP hybrid system based on plasma gasification[J]. Proceedings of the CSEE, 2022, 42(9): 3135-3151.
[10] 杨宏基, 周明, 武昭原, 等. 含光热电站的电-热能源系统优化运行机制[J]. 电网技术, 2022, 46(1): 175-185.
YANG H J, ZHOU M, WU Z Y, et al.Optimal operation of electro-thermal energy systems with concentrated solar power plant[J]. Power system technology, 2022, 46(1): 175-185.
[11] ZHANG X H, LIU X Y, ZHONG J Q, et al.Electricity-gas-integrated energy planning based on reward and penalty ladder-type carbon trading cost[J]. IET generation, transmission & distribution, 2019, 13(23): 5263-5270.
[12] FARROKHIFAR M, NIE Y H, POZO D.Energy systems planning: a survey on models for integrated power and natural gas networks coordination[J]. Applied energy, 2020, 262: 114567.
[13] 王程, 汪松, 毕天姝. 含燃气发电综合能源系统风电消纳能力评估[J]. 中国电机工程学报, 2020, 40(7): 2192-2201, 2398.
WANG C, WANG S, BI T S.Wind power accommodation capability assessment of integrated energy systems with gas-fired units[J]. Proceedings of the CSEE, 2020, 40(7): 2192-2201, 2398.
[14] LI Z M, XU Y.Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties[J]. Applied energy, 2019, 240: 719-729.
[15] MENG Q W, GUAN Q S, JIA N, et al.An improved sequential energy flow analysis method based on multiple balance nodes in gas-electricity interconnection systems[J]. IEEE access, 2019, 7: 95487-95495.
[16] CONNOLLY D, LUND H, MATHIESEN B V, et al.A review of computer tools for analysing the integration of renewable energy into various energy systems[J]. Applied energy, 2010, 87(4): 1059-1082.
[17] O'DWYER E, PAN I, ACHA S, et al. Smart energy systems for sustainable smart cities: Current developments, trends and future directions[J]. Applied energy, 2019, 237: 581-597.
[18] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543.
DIAO H B, LI P Q, WANG J F, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543.
[19] ZHANG X, STRBAC G, SHAH N, et al.Whole-system assessment of the benefits of integrated electricity and heat system[J]. IEEE transactions on smart grid, 2019, 10(1): 1132-1145.
[20] LONG S, MARJANOVIC O, PARISIO A.Generalised control-oriented modelling framework for multi-energy systems[J]. Applied energy, 2019, 235: 320-331.
[21] GUELPA E, BISCHI A, VERDA V, et al.Towards future infrastructures for sustainable multi-energy systems: a review[J]. Energy, 2019, 184: 2-21.
[22] KLEMM C, VENNEMANN P.Modeling and optimization of multi-energy systems in mixed-use districts: a review of existing methods and approaches[J]. Renewable and sustainable energy reviews, 2021, 135: 110206.
[23] PAN Z N, YU T, LI J, et al.Multi-agent learning-based nearly non-iterative stochastic dynamic transactive energy control of networked microgrids[J]. IEEE transactions on smart grid, 2022, 13(1): 688-701.
[24] ELMOUATAMID A, OULADSINE R, BAKHOUYA M, et al.Review of control and energy management approaches in micro-grid systems[J]. Energies, 2020, 14(1): 168.
[25] ZANMA T, AKIBA S, HOSHIKAWA K, et al.Cruise control for a two-wheeled mobile vehicle using its mixed logical dynamical system model[J]. IEEE transactions on industrial informatics, 2020, 16(5): 3145-3156.
[26] ZHANG M L, WU Q W, WEN J Y, et al.Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps[J]. Energy, 2021, 237: 121606.
[27] JALALI S M J, AHMADIAN S, KHOSRAVI A, et al. A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting[J]. IEEE transactions on industrial informatics, 2021, 17(12): 8243-8253.
[28] LI Z M, WU L, XU Y, et al.Multi-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven MPC-ADP approach[J]. IEEE transactions on smart grid, 2022, 13(1): 213-226.
[29] GARCIA-TORRES F, BORDONS C, TOBAJAS J, et al.Stochastic optimization of microgrids with hybrid energy storage systems for grid flexibility services considering energy forecast uncertainties[J]. IEEE transactions on power systems, 2021, 36(6): 5537-5547.
[30] OBALANLEGE M A, MAHMOUDI Y, DOUGLAS R, et al.Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity[J]. Renewable energy, 2020, 148: 558-572.
[31] LAMRANI B, KHOUYA A, DRAOUI A.Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software[J]. Solar energy, 2019, 183: 132-145.

基金

广东省重点领域研发计划(2020B010166004); 国家重点研发计划“智能电网技术与装备”重点专项(2016YFB0901300)

PDF(2307 KB)

Accesses

Citation

Detail

段落导航
相关文章

/