十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟

侯俊英, 杨金星, 郝建军, 侯传源, 李建昌, 王雅雅

太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 434-442.

PDF(3208 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3208 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (11) : 434-442. DOI: 10.19912/j.0254-0096.tynxb.2023-0191

十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟

  • 侯俊英, 杨金星, 郝建军, 侯传源, 李建昌, 王雅雅
作者信息 +

FABRICATION OF OCTADECANOL/ZIF-8 SHAPE STABLIZED COMPOSITE PHASE CHANGE MATERIAL AND THERMAL SIMULATION OF HEAT ACCUMULATOR

  • Hou Junying, Yang Jinxing, Hao Jianjun, Hou Chuanyuan, Li Jianchang, Wang Yaya
Author information +
文章历史 +

摘要

制备一种新型的定形复合相变材料,以十八醇(OD)为相变芯材,ZIF-8金属有机骨架为载体,制备出质量分数为50%~80% OD/ZIF-8定形复合相变材料。扫描电镜(SEM)结果显示:ZIF-8孔道内的毛细作用力可有效吸附十八醇,其最大负载量可达80%;X射线衍射(XRD)、傅里叶红外光谱(FT-IR)结果显示OD与ZIF-8之间只是物理结合,未发生化学变化;差示扫描热仪(DSC)测试结果表明:质量分数为80%的OD/ZIF-8在60 ℃下循环加热—冷却50次后,熔化焓未显著降低,说明此复合相变材料具有良好的热循环稳定性。另外,根据质量分数为80%的OD/ZIF-8的导热系数为0.2982 W/(m·K),以质量分数为80% OD/ZIF-8为蓄热介质对蓄热器进行Fluent模拟分析,分别研究新型管束布置方式及添加翅片两种强化传热方式对蓄热器蓄热效果的影响规律。

Abstract

We prepared 50%-80%OD/ZIF-8 composite phase change materials (PCMs) with the octadecanol (OD) as core material and the ZIF-8 as a supporting material. SEM images results show that the octadecanol was absorbed in the pore of ZIF-8 by capillary adsorption force, the loading of OD can reach 80%. XRD and FT-IR analysis showed the octadecanol and ZIF-8 were only physically combined with no chemical changes. DSC results show that the 80% OD/ZIF-8 composite PCM is heated-cooled at 60 ℃ for 50 times, the latent heat of was no significant decrease, Indicating the 80% OD/ZIF-8 composite PCM has excellent thermal stability. In addition, according to the thermal conductivity of 80% OD/ZIF-8, the fluent simulation was used to verify the influence of accumulator. Furthermore, we study the influence of heat storage by rearrange the tube bundle and addition fins.

关键词

储能 / 相变材料 / 十八醇 / 金属有机骨架 / 蓄热器 / 模拟

Key words

energy storage / phase change materials / octadecanol / metal organic framework / heat accumulator / simulation

引用本文

导出引用
侯俊英, 杨金星, 郝建军, 侯传源, 李建昌, 王雅雅. 十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟[J]. 太阳能学报. 2023, 44(11): 434-442 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0191
Hou Junying, Yang Jinxing, Hao Jianjun, Hou Chuanyuan, Li Jianchang, Wang Yaya. FABRICATION OF OCTADECANOL/ZIF-8 SHAPE STABLIZED COMPOSITE PHASE CHANGE MATERIAL AND THERMAL SIMULATION OF HEAT ACCUMULATOR[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 434-442 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0191
中图分类号: TK02   

参考文献

[1] 吕喜风, 白金刚, 时春辉, 等. 乳液聚合法制备石蜡基相变储能材料及热物性研究[J]. 太阳能学报, 2022, 43(11): 392-398.
LYU X F, BAI J G, SHI C H, et al.Preparation and thermophysical properties of paraffin-based phase change energy storage materials by emulsion polymerization[J]. Acta energiae solaris sinica, 2022, 43(11): 392-398.
[2] 闫嘉森, 韩现英, 党兆涵, 等. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 326-332.
YAN J S, HAN X Y, DANG Z H, et al.Preparation and performance of paraffin/expanded graphite/graphene composite phase change heat storage material[J]. Chemical journal of Chinese universities, 2022, 43(6): 326-332.
[3] 王秋惠, 孙立国, 李佳雯. 基于相变储能的建筑光伏系统储能优化配置研究[J]. 华电技术, 2021, 43(9): 54-61.
WANG Q H, SUN L G, LI J W.Optimized configuration of energy storage devices of building photovoltaic system with phase-change energy storage[J]. Huadian technology, 2021, 43(9): 54-61.
[4] CHEN X, GAO H Y, TANG Z D, et al.Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell reports physical science, 2020, 1(10): 100218.
[5] 霍宇涛, 陈之琳, 饶中浩. 方腔内相变材料固液相变传热研究[J]. 工程热物理学报, 2020, 41(3): 615-620.
HUO Y T, CHEN Z L, RAO Z H.Investigation of heat transfer for solid-liquid phase change in a square cavity[J]. Journal of engineering thermophysics, 2020, 41(3): 615-620.
[6] 刘子路, 张宇昂, 唐炳涛, 等. 铜纳米粒子导热增强固-液相变储能材料的性能[J]. 精细化工, 2022, 39(12): 2409-2416.
LIU Z L, ZHANG Y A, TANG B T, et al.Properties of solid-liquid phase change materials based on copper nanoaggregates with enhanced thermal conductivity for storing thermal energy[J]. Fine chemicals, 2022, 39(12): 2409-2416.
[7] 舒钊, 钟珂, 肖鑫, 等. 硅藻土基脂肪酸定型相变材料的制备与表征[J]. 硅酸盐学报, 2022, 50(6): 1652-1660.
SHU Z, ZHONG K, XIAO X, et al.Preparation and characterization of fatty acid stabilized composite phase change materials based on diatomite for construction[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1652-1660.
[8] YANG L, YUAN Y P, ZHANG N, et al.Photo-to-thermal conversion and energy storage of lauric acid/expanded graphite composite phase change materials[J]. International journal of energy research, 2020, 44(11): 8555-8566.
[9] 李洁, 张佳, 付明琴, 等. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(S2): 483-487.
LI J, ZHANG J, FU M Q, et al.Study on the performance of organic base binary stereotyped composite phase change material supported by mesoporous SiO2[J]. Materials reports, 2021, 35(S2): 483-487.
[10] 王铁营, 王凯晨, 张天影, 等. 粉煤灰高温定型相变储热材料制备及性能表征[J]. 中国科学: 技术科学, 2020, 50(9): 1235-1242.
WANG T Y, WANG K C, ZHANG T Y, et al.High-temperature shape-stable phase-change material based on coal fly ash[J]. Scientia sinica (technologica), 2020, 50(9): 1235-1242.
[11] 杨效田, 沈梁玉, 王彩龙, 等. 石蜡对无机复合相变储热体系的改性研究[J]. 复合材料学报, 2022, 39(5): 2421-2429.
YANG X T, SHEN L Y, WANG C L, et al.Study on paraffin modifying inorganic composite phase change heat storage system[J]. Acta materiae compositae sinica, 2022, 39(5): 2421-2429.
[12] 刘亮, 吴爱枝, 黄云, 等. 两类复合无机相变储热材料高温热稳定性和安全性研究[J]. 化工学报, 2020, 71(S2): 314-320.
LIU L, WU A Z, HUANG Y, et al.Research on high temperature thermal stability and safety of two types of composite inorganic phase change thermal storage materials[J]. CIESC journal, 2020, 71(S2): 314-320.
[13] 戴远哲, 唐波, 张振宇, 等. 多孔载体基水合盐相变材料热物性研究进展[J]. 精细化工, 2020, 37(9): 1755-1761, 1824.
DAI Y Z, TANG B, ZHANG Z Y, et al.Research progress of thermophysical properties of porous carrier-based hydrated salts phase change materials[J]. Fine chemicals, 2020, 37(9): 1755-1761, 1824.
[14] ARSHAD A, JABBAL M, YAN Y Y, et al.The micro-/ nano-PCMs for thermal energy storage systems: a state of art review[J]. International journal of energy research, 2019, 43(11): 5572-5620.
[15] 陈之帆, 孙志高, 汤小蒙, 等. 纳米Fe2O3/硬脂酸/十八醇纳米复合相变蓄热材料的性能研究[J]. 太阳能学报, 2021, 42(3): 422-427.
CHEN Z F, SUN Z G, TANG X M, et al.Study on properties of ferumoxytol/stearic acid/stearyl alcohol composite phase change heat storage material[J]. Acta energiae solaris sinica, 2021, 42(3): 422-427.
[16] UMAIR M M, ZHANG Y A, IQBAL K, et al.Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-a review[J]. Applied energy, 2019, 235: 846-873.
[17] 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432.
LI X H, CHEN M Z, ZHOU X Y.Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese journal of engineering, 2020, 42(11): 1422-1432.
[18] 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
ZHU S X, ZOU D Q, BAO J M, et al.Supercooling characteristics and its adjustment of phase change material: a review[J]. Materials reports, 2020, 34(19): 19075-19082.
[19] 仝仓, 李祥立, 端木琳. 多管式相变蓄热器换热影响因素研究[J]. 太阳能学报, 2019, 40(8): 2299-2305.
TONG C, LI X L, DUANMU L.Study on heat transfer influence factors of multitube phase change thermal accumulator[J]. Acta energiae solaris sinica, 2019, 40(8): 2299-2305.
[20] 张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展, 2022, 41(12): 6408-6418.
ZHANG X Y, ZHAO Z X.Research progress of metal-organic framework-based phase-change materials for thermal energy storage[J]. Chemical industry and engineering progress, 2022, 41(12): 6408-6418.
[21] 王晶晶, 肖方南, 吴允昆. 金属有机骨架与新型载药体系[J]. 化学通报, 2022, 85(3): 297-302.
WANG J J, XIAO F N, WU Y K.Metal-organic frameworks and novel drug loading system[J]. Chemistry, 2022, 85(3): 297-302.
[22] 侯俊英, 杨金星, 郝建军, 等. 石蜡/Fe-MIL-101-NH2金属有机骨架定形复合相变材料制备[J]. 农业工程学报, 2021, 37(15): 232-238.
HOU J Y, YANG J X, HAO J J, et al.Shape-stable phase change materials preparation of composite of paraffin/Fe-MIL-101-NH2 as metal-organic framework[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 232-238.
[23] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 186-192.
FANG G H, ZHAO M S, SUN P B.Preparation and characterization of a shape-stabilized composite phase change material based on palmitic-stearic acid/expanded graphite for energy storage[J]. Materials reports, 2023, 37(20): 186-192.
[24] LI A, DONG C, DONG W J, et al.Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS applied materials & interfaces, 2018, 10(38): 32093-32101.
[25] 曹丽华, 于靖雯, 李亚强, 等. 管翅式相变蓄热装置的三因素优化[J]. 工程热物理学报, 2022, 43(12): 3162-3170.
CAO L H, YU J W, LI Y Q, et al.Three factors optimization of tube-fin phase change heat storage device[J]. Journal of engineering thermophysics, 2022, 43(12): 3162-3170.
[26] TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal—organic frameworks:zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS catalysis, 2011, 1(2): 120-127.
[27] JIANG Z, SUN H Y, QIN Z H, et al.Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template[J]. Chemical communications, 2012, 48(30): 3620-3622.
[28] WANG X L, CHENG X M, LI Y Y, et al.Self-assembly of three-dimensional 1-octadecanol/graphene thermal storage materials[J]. Solar energy, 2019, 179: 128-134.
[29] TA D N, NGUYEN H K D, TRINH B X, et al. Preparation of nano-ZIF-8 in methanol with high yield[J]. The Canadian journal of chemical engineering, 2018, 96(7): 1518-1531.
[30] 刘旻瑞, 孙志高, 李成浩, 等. 硬脂酸-十八醇二元复合相变材料性能研究[J]. 太阳能学报, 2019, 40(6): 1553-1559.
LIU M R, SUN Z G, LI C H, et al.Study on properties of stearic acid-stearyl alcohol binary composite phase change materials[J]. Acta energiae solaris sinica, 2019, 40(6): 1553-1559.
[31] ERASMUS E, THÜNE P C, VERHOEVEN M W G M, et al. A new approach to silver-catalysed aerobic oxidation of octadecanol: probing catalysts utilising a flat, two-dimensional silicon-based model support system[J]. Catalysis communications, 2012, 27: 193-199.
[32] 李太雨, 马文中, 徐荣, 等. PI/ZIF-8杂化膜的制备及渗透汽化分离性能研究[J]. 高校化学工程学报, 2020, 34(3): 648-655.
LI T Y, MA W Z, XU R, et al.Preparation and pervaporation separation performance of PI/ZIF-8 hybrid membranes[J]. Journal of chemical engineering of Chinese universities, 2020, 34(3): 648-655.
[33] LI N, ZHOU L, JIN X Y, et al.Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework[J]. Journal of hazardous materials, 2019, 366: 563-572.
[34] WU J F, JIN Y N, WU D P, et al.Well-construction of Zn2SnO4/SnO2@ZIF-8 core-shell hetero-structure with efficient photocatalytic activity towards tetracycline under restricted space[J]. Chinese journal of chemical engineering, 2022, 52: 45-55.
[35] BUMSTEAD A M, THORNE M F, SAPNIK A F, et al.Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks[J]. Dalton transactions, 2022, 51(36): 13636-13645.
[36] HOU J Y, WANG Y Y, LIU J C, et al.Enhanced thermal conductivity of copper-doped polyethylene glycol/urchin-like porous titanium dioxide phase change materials for thermal energy storage[J]. International journal of energy research, 2020, 44(3): 1909-1919.
[37] 何丽红, 王浩, 杨帆, 等. 聚乙二醇/SiO2定形相变材料在沥青中的相变储热性能[J]. 化工进展, 2018, 37(3): 1076-1083.
HE L H, WANG H, YANG F, et al.Phase change heat storage properties of PEG/SiO2 shape-stabilized phase change materials in asphalt[J]. Chemical industry and engineering progress, 2018, 37(3): 1076-1083.

基金

河北农业大学人才引进专项(YJ201815); 河北省省属高校基本科研业务(KY2022017); 河北省重点研发计划(18227209D)

PDF(3208 KB)

Accesses

Citation

Detail

段落导航
相关文章

/