针对应用于50 m水深海域的10 MW海上风力机,设计由三浮筒及三立柱组成的新型浮式基础,建立带有骨材结构的有限元分析模型。对于有关此新型浮式基础的设计波参数,一般选用随机性设计波的方法来确定,对波浪载荷工况下的整体结构。重点研究浮筒的骨材尺寸以及骨材间距对新型浮式基础强度的影响规律,并得到纵横骨材尺寸组合对新型浮式基础整体强度的影响规律。研究表明,新型浮式基础结构高应力区域位于3个浮筒连接处,浮筒板单元应力水平受骨材尺寸和骨材间距的共同影响,采用合适的尺寸间距组合可在应力水平相当的情况下显著降低用钢量。
Abstract
A new floating foundation composed of three pontoons and three columns was designed for a 10 MW offshore turbine in a water depth of 50 meters, and a finite element analysis model with stiffeners structure was established. The design wave parameters of new floating foundation were determined by random design wave method, and the strength of the overall structure under wave load condition was analyzed. The influence of the size and the spacing of the pontoons on the strength of new floating foundation of pontoon was studied, and the influence of longitudinal and transverse stiffeners size combination on the overall strength of new floating foundation was obtained. It is found that the high-stress area of the new floating structure is located at the connection of the three pontoons, and the stress level of the pontoon is affected by both the size and the spacing of the stiffeners.A appropriate size spacing combination can significantly reduce the steel consumption with comparable stress levels. This paper can provide a reference for the design of semi-submersible offshore wind turbine structures.
关键词
半潜式平台 /
海上风电 /
谱分析 /
设计波法 /
强度校核 /
骨材布置方案
Key words
semisubmersibles platform /
power wind power /
spectrum analysis /
design wave method /
strength check /
stiffeners arrangement scheme
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
HU A G.China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15.
[2] 张海彬, 沈志平, 李小平. 深水半潜式钻井平台波浪载荷预报与结构强度评估[J]. 船舶, 2007, 18(2): 33-38.
ZHANG H B, SHEN Z P, LI X P.Wave load calculation and structural strength assessment for deepwater semi-submersible[J]. Ship & boat, 2007, 18(2): 33-38.
[3] 王世圣, 谢彬, 冯玮, 等. 两种典型深水半潜式钻井平台运动特性和波浪载荷的计算分析[J]. 中国海上油气, 2008, 20(5): 349-352.
WANG S S, XIE B, FENG W, et al.Calculation and analysis of motion characteristics and wave load for two types of deepwater semi-submersible drilling rig with different configuration[J]. China offshore oil and gas, 2008, 20(5): 349-352.
[4] 邓露, 王彪, 肖志颖, 等. 钢筋混凝土浮式风机平台概念设计与性能研究[J]. 华中科技大学学报(自然科学版), 2016, 44(1): 11-15, 21.
DENG L, WANG B, XIAO Z Y, et al.Conceptual design and performance analysis of a reinforced concrete platform for floating wind turbines[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2016, 44(1): 11-15, 21.
[5] 严文军, 刘俊. 半潜平台总体强度计算中的波浪工况研究[J]. 船舶工程, 2014, 36(4): 108-111.
YAN W J, LIU J.Study on wave working condition in overall strength calculation of semi-submersible platform[J]. Ship engineering, 2014, 36(4): 108-111.
[6] 李境伟, 窦培林, 张兴刚. 超深水半潜式平台典型节点强度分析[J]. 舰船科学技术, 2021, 43(19): 72-78.
LI J W, DOU P L, ZHANG X G.Typical node strength analysis of ultra-deepwater semi-submersible platform[J]. Ship science and technology, 2021, 43(19): 72-78.
[7] 张朝阳, 刘俊, 白艳彬. 深水半潜平台波浪载荷计算的设计波方法研究[J]. 中国海洋平台, 2012, 27(5): 34-40.
ZHANG C Y, LIU J, BAI Y B.Study on design wave methods of calculating the wave loads of a deep-water semi-submersible platform[J]. China offshore platform, 2012, 27(5): 34-40.
[8] 李辉, 任慧龙, 陈北燕, 等. 深水半潜式平台波浪载荷计算方法研究[J]. 华中科技大学学报(自然科学版), 2009, 37(3): 122-125.
LI H, REN H L, CHEN B Y, et al.Calculating the wave loads of semi-submersible platforms in deep water[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2009, 37(3): 122-125.
[9] 梁双令, 章红雨, 齐江辉, 等. 基于设计波法的船体波浪载荷计算[J]. 舰船科学技术, 2018, 40(7): 39-42.
LIANG S L, ZHANG H Y, QI J H, et al.Wave loads of ships calculating based on design wave methods[J]. Ship science and technology, 2018, 40(7): 39-42.
[10] 邱继栋, 杨平. 双向正交密加筋板的极限强度研究[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(5): 1080-1083, 1088.
QIU J D, YANG P.Research on ultimate strength of the two-way orthogonal multi-stiffened plates[J]. Journal of Wuhan University of Technology (transportation science & engineering), 2013, 37(5): 1080-1083, 1088.
[11] RODDIER D, CERMELLI C,AUBAULT A,et al.Wind float:a floating foundation for offshore wind turbines[J]. Energy conversion and management, 2001, 42(11): 1357-1378.
[12] YU W, MULLER K, LEMMER F.Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50m[R]. H2020-LCE-2014-1-640741, 2018.
[13] LUAN C, GAO Z, MOAN T.Design and analysis of a braceless steel 5MW semi-submersible wind turbine[C]//Proceedings of ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, Korea, 2016.
[14] BAK C, ZAHLE F, BITSCHE R,et al.The DTU 10MW reference wind turbine[R]. DTU Wind Energy Report-I-0092, 2013.
[15] ABS0006-2015. Rules for building and classing mobile offshore drilling unites[S].
[16] ABS. Guide for building and classing: floating production installations[S]. 2009.
[17] 中国船级社. 海上移动平台入级与建造规范(2005)[M]. 北京: 人民交通出版社, 2005.
CCS. Offshore mobile platform classification and construction specifications(2005)[M]. Beijing: People's Communications Press, 2005.
[18] Det norske veritas. Sesam user course genie workshop[DB/CD]. 2010.
[19] 蔡永光. 深水半潜平台结构响应研究[D]. 大连: 大连理工大学, 2008.
CAI Y G.Research on Structure Response of a Deep-water Semi-submersible Platform[D]. Dalian: Dalian University of Technology, 2008.
基金
国家自然科学基金(52171281); 山东省重点研发计划项目(2020CXGC010702); 中央高校基本科研业务费专项(202213032)