研究叶片影响下风力机塔筒的涡激振动特性。首先,基于计算流体力学(CFD)方法、结构动力学理论以及重叠网格技术,建立塔筒结构的双自由度涡激振动仿真模型,通过与文献试验数据对比,验证模型的准确与适用性。并将该模型用于分析NREL 5 MW风力机塔筒与叶片的双自由度涡激振动。结果表明,采用重叠网格技术和CFD方法相结合,规避了由结构较大振幅所引发的网格畸变和负网格问题,获得了较高的计算精度。相比单塔筒振动工况,考虑叶片对塔筒影响后,两者的尾涡相互干扰与合并现象明显,导致塔筒的双自由运动更为复杂。在约化速度3~11范围内,塔筒横向最大振幅响应约为单塔筒工况的10倍,且振动频率出现“锁定”。
Abstract
In this study, the vortex-induced vibration characteristics of a wind turbine tower under the influence of the blades are investigated. Firstly, the two-degree-of-freedom vortex-induced vibration simulation model for a column structure is developed based on computational fluid dynamics (CFD) methods, structural dynamics theory, and overset mesh technique. The simulation results of the model is compared with experimental data from domestic and international literature to verify its accuracy and applicability. The model is used to calculate the two-degree-of-freedom vortex-induced vibration of the tower and blades of an NREL 5 MW wind turbine. The results show that the combination of the overset mesh technique and the CFD method avoids the mesh distortion and negative mesh problems caused by the large amplitude of the structure, and achieves high computational accuracy. Compared with the single tower vibration condition, the mutual interference and merging of the tail vortex shedding of the two are obvious after considering the influence of the blades on the tower, resulting in a more complex double-free motion law of the tower. In the approximate speed range of 3 to 11, the maximum transverse amplitude response of the tower is about 10 times that of the single tower case, and the vibration frequency appears to be "locked".
关键词
风力机 /
流固耦合 /
计算流体力学 /
双自由度 /
涡激振动
Key words
wind turbines /
fluid structure interaction /
computational fluid dynamics /
two degrees of freedom /
vortex-induced vibration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LENNIE M, SELAHI-MOGHADDAM A, HOLST D, et al.Vortex shedding and frequency lock in on stand still wind turbines:a baseline experiment[J]. Journal of engineering for gas turbines and power, 2018, 140(11): 112603.
[2] MOHAMMADI E, FADAEINEDJAD R, MOSCHOPOULOS G.Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines[J]. Journal of sound and vibration, 2018, 421: 132-152.
[3] HUO T, TONG L.An approach to wind-induced fatigue analysis of wind turbine tubular towers[J]. Journal of constructional steel research, 2020, 166: 105917.
[4] FENG C C.The measurement of vortex-induced effects on flow past stationary and oscillating circular D-section cylinders[D]. Masc Thesis University of British, 1968.
[5] GRIFFIN O M.Vortex-excited cross-flow vibrations of a single cylindrical tube[J]. Journal of pressure vessel technology, 1980, 102(2): 158-166.
[6] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of fluids and structures, 1996, 10(5): 455-472.
[7] KHALAK A, WILLIAMSON C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of fluids and structures, 1997, 11(8): 973-982.
[8] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of fluid mechanics, 2004, 509: 23-62.
[9] 李骏, 李威. 基于SST k-ω湍流模型的二维圆柱涡激振动数值仿真计算[J]. 舰船科学技术, 2015, 37(2): 30-34.
LI J, LI W.Numerical simulation of vortex-induced vibration of a two-dimensional circular cylinder based on the SST k-ω turbulent model[J]. Ship science and technology, 2015, 37(2): 30-34.
[10] 陈东阳, 肖清, 顾超杰, 等. 柱体结构涡激振动数值计算[J]. 振动与冲击, 2020, 39(19): 7-12, 47.
CHEN D Y, XIAO Q, GU C J, et al.Numerical calculation of vortex-induced vibration of a cylinder structure[J]. Journal of vibration and shock, 2020, 39(19): 7-12, 47.
[11] RAHMANIAN M, CHENG L, ZHAO M, et al.Vortex induced vibration and vortex shedding characteristics of two side-by-side circular cylinders of different diameters in close proximity in steady flow[J]. Journal of fluids and structures, 2014, 48: 260-279.
[12] 杨骁, 赵燕, 杜晓庆, 等. 双圆柱尾流致涡激振动的质量比效应及其机理[J]. 振动工程学报, 2020, 33(1): 24-34.
YANG X, ZHAO Y, DU X Q, et al.Effects of mass ratio on wake-induced vibration of two tandem circular cylinders and its mechanism[J]. Journal of vibration engineering, 2020, 33(1): 24-34.
[13] 龚曙光, 吴兴豪, 卢海山, 等. 无叶片风力机捕能柱涡激摆动特性及捕能效率[J]. 太阳能学报, 2022, 43(1): 21-28.
GONG S G, WU X H, LU H S, et al.Vortex-induced swing characteristics and capturing energy efficiency of capturing energy column of bladeless wind turbine[J]. Acta energiae solaris sinica, 2022, 43(1): 21-28.
[14] 孙洪源, 张举明, 单亦石, 等. 考虑阻尼比的Spar式浮式风力机基础结构涡激运动特性研究[J]. 太阳能学报, 2022, 43(1): 154-160.
SUN H Y, ZHANG J M, SHAN Y S, et al.Study on vortex induced motion characteristics of Spar-type floating base structure for offshore wind turbine under different damping ratio[J]. Acta energiae solaris sinica, 2022, 43(1): 154-160.
[15] 陶涛, 龙凯, 白欣鉴, 等. 风电机组高柔塔二阶涡激振动特性研究[J]. 太阳能学报, 2022, 43(2): 498-503.
TAO T, LONG K, BAI X J, et al.Study on second-order vortex-induced vibration characteristics of high-flexible towers of wind turbines[J]. Acta energiae solaris sinica, 2022, 43(2): 498-503.
[16] 王敏中. 圣维南原理发展简介[J]. 力学与实践, 1980(4): 72-73.
WANG M Z.Introduction to the development of the Saint-Venant principle[J]. Mechanics in engineering, 1980(4): 72-73.
[17] 李大隆. 基于双向流固耦合模拟技术的高层建筑风振机理研究[D]. 重庆: 重庆大学, 2020.
LI D L.Study on wind-induced vibration mechanism of high-rise buildings based on two-way fluid-solid coupling simulation technology[D]. Chongqing: Chongqing University, 2020.
[18] KEOGH E, LIN J, LEE S H, et al.Finding the most unusual time series subsequence: algorithms and applications[J]. Knowledge and information systems, 2007, 11(1): 1-27.
基金
国家自然科学基金(51876054; 11502070; 12102125); 江苏风力发电工程技术中心开放基金项目(ZK22-03-01); 南通市科技项目(JC2021108)